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Cluster dissimilarities for hierarchical methods

To apply a hierarchical clustering method, one must first choose a method
of using dissimilarities for items to define dissimilarities for clusters. Three
common (and somewhat obvious) possibilities in this regard are as follows.
For (i and (C» different elements of a partition of the set of items, or

equivalently their r indices, one might define dissimilarity of C; and (, as

1. D(CG, &) = min{dj|i € G and j € Gy} (this is the "single linkage"
or "nearest neighbor" choice),

2. D (G, &) = max{dj|i € C; and j € (5} (this is the "complete
linkage" choice), or

3. D(G, ) = ﬁZEEQ,}eCQ d;; (this is the "average linkage"
choice).
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An agglomerative hierarchical method

An agglomerative/bottom-up hierarchical clustering algorithm then begins
with every item x;,7 = 1,2, ..., r functioning as a singleton cluster. Then
one finds the minimum dj; for i # j and puts the corresponding two items
into a single cluster (of size 2). Then at a stage where there are m
clusters, one merges two clusters with minimum dissimilarity make a single
cluster, leaving m — 1 clusters overall. This continues until there is only a
single cluster. The sequence of r different clusterings (with r through 1
clusters) serves as a menu of potentially interesting solutions to the
clustering problem. These can be displayed in the form of a dendogram,
where cutting the dendogram at a given level picks out one of the
(increasingly coarse as the level rises) clusterings. Those items clustered
together "deep" in the tree/dendogram are presumably interpreted to be
potentially "more alike" than ones clustered together only at a high level.
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A divisive hierarchical method

A divisive/top-down hierarchical algorithm starts with a single "cluster"
consisting of all items. One finds the maximum d;; and uses the two
corresponding items as seeds for two clusters. One then assigns each x;
for | # i and | # j to the cluster represented by x; if

d (g ep) < d (%)

and to the cluster represented by x; otherwise. When there are m
clusters, one identifies the cluster with largest d;; corresponding to a pair
of elements in the cluster, splitting it using the method applied to split the
original "single large cluster" (to produce an (m -+ 1)-cluster clustering).
This, like the agglomerative algorithm, produces a sequence of r different
clusterings (with 1 through r clusters) that serves as a menu of potentially
interesting solutions to the clustering problem. And like the sequence
produced by the agglomerative algorithm, this sequence can be
represented using a dendogram.




Thresholding

Both the agglomerative and divisive algorithms may be modified by fixing
a threshold t > 0 for use in deciding whether or not to merge two clusters
or to split a cluster. The agglomerative version terminates when all pairs
of existing clusters have dissimilarities more than t. The divisive version
terminates when all dissimilarities for pairs of items in all clusters are
below t. Employing a threshold has the potential to shorten the menu of
clusterings produced by either of the methods to include less than r
clusterings. (Thresholding the agglomerative method cuts off the top of
the corresponding full dendogram, and thresholding the divisive method
cuts off the bottom of the corresponding full dendogram.)




