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Objectives/preliminaries

For items Xq, X, ..., X, belonging to ", the object here is to find L x M
cluster centers/prototypes that adequately represent the items, where one
wishes to think of those cluster-centers/prototypes as indexed on an

L x M regular grid in 2 dimensions (that we might take to be

5 R— F Yo AL 2o s M}) with cluster-centers/prototypes whose index
vectors are close on the grid being close in RP. The object is both
production of the set of centers/prototypes and also assighment of data
points to centers/prototypes. In this way, this amounts to some kind of
modified /constrained K = L X M group clustering problem.

This typically begins with standardization of the p coordinate variables x;.
This puts all of the x; on the same scale and doesn’t allow one coordinate
of an x; to dominate a Euclidean norm.
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Objectives/preliminaries cont.

Below is a cartoon illustrating the objective of making a SOM.
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Kohonen's SOM algorithms

Begin with some initial cluster centers {2311}1:1 _____ il 1D RP.
This might be a random selection (without replacement or the possibility
of duplication) from the set of items. It might be a set of grid points in
the 2-d "plane" in RP defined by the first two principal components of the
items {xf}:'ZI,...,r'

Then define neighborhoods on the L x M grid, N (/, m) (in R?), that are
subsets of the grid "close" to the various elements of the L X M grid.

N (I, m) could be all of the grid, (/, m) alone, all grid points (/', m") within
some constant 2-dimensional Euclidean distance, of (/, m), etc. Define a
weighting function (for R”), say w (||x||), so that w (0) = 1 and

w (||x||) > 0 is monotone non-increasing in ||x||. For some schedule of
non-increasing positive constants 1 > a7 > ayp > a3 > - - -, Kohonen's

SOM algorithms iteratively define sets of cluster centers/prototypes {z{,m}
for j—1.2... ..




Kohonen’s “online” SOM version

At iteration j, an "online" version of SOM selects (randomly or in turn
from a randomly set ordering of the items) an item X/ and

1. identifies the center/prototype zj_1 closest to X/ in R”, call it b/ and
its grid coordinates (/, m)J (b’ is the "BMU" /best-matching-unit),

2. adjusts those zj with index vectors belonging N ((! m ) (close to
the BMU index vector on the 2-dimensional grid) toward x' by

‘ 1
ijm + o (H Im bJ H) (xj ijm )
(adjusting those centers different from the BMU potentially less

dramatically than the BMU), and
3. for those zj with index pairs (/, m) not belonging N ((f m)’ ) sets

7l =g

Im Im

iterating to convergence.




-
A “batch” SOM algorithm

At iteration j, a "batch" version of SOM updates all centers/prototypes
{ZJ‘,;I} to {ijm} as follows. For each zj_1 let X;:_I be the set of items

} has index pair (/, m). Then

for which the closest element of { Im

update z{_l as some kind of (weighted) average of the elements of

L Y , (the set of x; closest to prototypes with labels that

(I,m) eN(I,m) (/,m)
are 2-dimensional grid neighbors of (/, m)). A natural form of this is to

. —/—1 j—1
set (with xJ“,m} the sample mean of the elements of &) )

_j—1
) x(f,m)’

)
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Comments on classical SOMs

It i1s fairly obvious that even if these Kohonen algorithms converge,
different starting sets {zﬂn} will produce different limits (symmetries alone
mean, for example, that the choices Z?m — uy, and z?m = WM
produce what might look like different limits, but are really completely
equivalent). Beyond this, what is provided by the 2-dimensional layout of
indices of prototypes is not immediately obvious. It seems to be fairly
common to compare an error sum of squares for a SOM to that of a

K = L x M means clustering and to declare victory if the SOM sum is not
much worse than the K-means value.




A more principled approach

Dissertation work of Rick Zhou takes a principled Bayesian modeling and
decision-theoretic approach to the SOM objective. The following is an
overview of his methodology.

To develop a useful ("generative") model for x1, %o, ..., X, belonging to
RP, begin by defining p (one for each dimension of the data vectors) 0
mean Gaussian spatial processes

C1 (uv) Qo (u,v), ... Cp(u,v)

and set
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More modeling

C (u,v) defines a continuous random map R?2 — RP. For L x M points
o = (I, m) on an integer grid in R? take  (/, m) as the center of a
data-generating mechanism in &”. Assume that xy,...,X, are iid as
follows. First, one of the L x M fixed points p = (/, m) on the grid of
Interest is chosen at random and conditioned on this choice

x ~ MVN (Z (p) , E,)

Upon supplying suitable (values of or) prior distributions for the
parameters of the p Gaussian processes and priors for the covariance

matrices X; ,,, MCMC will for observable xy, ..., X, and corresponding
latent Py« o, p, produce samples from a posterior distribution over all of
P1 P2 P,

(i (p) for all points p in the grid and j = 1,2,..., p
L, for all points p in the grid
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Computing and an objective

The grid points for the r cases, p,,...,p,, are of most interest. Two
cases X; and X;; belong to the the same cluster if p. = p,,. The MCMC
provides relative frequencies that approximate posterior probabilities that
case / and case i’ belong together, P [p. = p,|. That is, one obtains an
estimate € of the matrix

C=(P [P; = P;f”:’zl.

2
EXS =192 ..

through MCMC relative frequencies and may seek an assignment of data
points to grid points that

1. 1s consistent with C, and

2. (at least locally) more or less preserves relative distances between

clusters in \R” in terms of distances between corresponding grid points

in R2.

I
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Posterior average disagreement penalty

For an assignment of data points to grid points & (that maps {1,2,...,r}

to the set of pairs of indices p = (i,) in the grid) consider two types of
penalties, one for inconsistency with C and another for failure to preserve

distances. A measure of disparity between partitions of {1,2,..., r}
corresponding to p,,...,p, and toay,..., &, isfora>0and b >0

Ly « oo ) o081y oo ylip] ) = Zaf [p;- = p, and &; # ;]

i<

+ Y bl [o; # p; and &; = a;]

i<y

The average of this with respect to the posterior distribution is

e j<f
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Penalty for inconsistency with C

So a plausible penalty for inconsistency with C is

Rl ((ﬁil ..... rxr),C,)\): r(rl_l)ZI[a_; :a:-,](f’t—q';f)

1<’

In the penalty Ry ((ay, ..., «,),C,A) the parameter A € (0, 1) determines

what kinds of partitions of {1,2,..., r} are most heavily penalized. Large
A tends to heavily penalize (a4, ..., «, ) prescribing large clusters, and
small A tends to heavily penalize («aq,..., ., ) with small clusters.




Penalty for failure to preserve distances

Consider then penalizing failure to preserve distances. Define maximum
distances

Mgrid B p and pcnoixthe grid Hp B pr and

Myata = max lixi — x|
i1

And define for r & {1, 2. i, K} the sets Nk consisting of those pairs /
and /" such that at least one of the points x; and x; is in the K-nearest
neighborhood of the other.




Penalty for failure to preserve distances cont.

Then, a "local multi-dimensional scaling" type penalty for an assignment
of data points to grid points is

Z “xf—x{“’H ‘ﬂé,—ﬂfij 2
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fora T > 0. (The first term penalizes failure to preserve local relative
distances and the second encourages separation of mappings of points on
the grid that are not neighbors in the R” data set.)




Approximately minimum posterior risk

So, a sensible risk/figure of merit for a map a is for A > 0

Exact optimization of R ((&1 ..... ar), C.\ K, v, T) by choice of
(1, ., «,) is rarely computationally possible. What is possible and

seems to work well is to make a long MCMC run (making the estimate C

reliable) and then look for an MCMC iterate (pﬁ ..... p{) with the best
value of R ((p’l, . pjr) C A K, 7, T). The Bayes model behind the

MCMC tends to concentrate the posterior (and thus make iterates) in a
manner consistent with the clustering and distance preservation goals of

SOM.




A real example

The famous "Wines" data set has p = 13 chemical characteristics of

r = 178 wine samples from 3 different cultivars (59 (red) samples. 71

(blue) samples, and 48 (violet) of the three types indexed 1-59, 60-130
and 131-178 respectively). The figure on the next panel is a graphical
(grey-scale) representation of C and a corresponding best iterate

(pg ..... p{,) from an MCMC run (taken from the PhD dissertation of
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