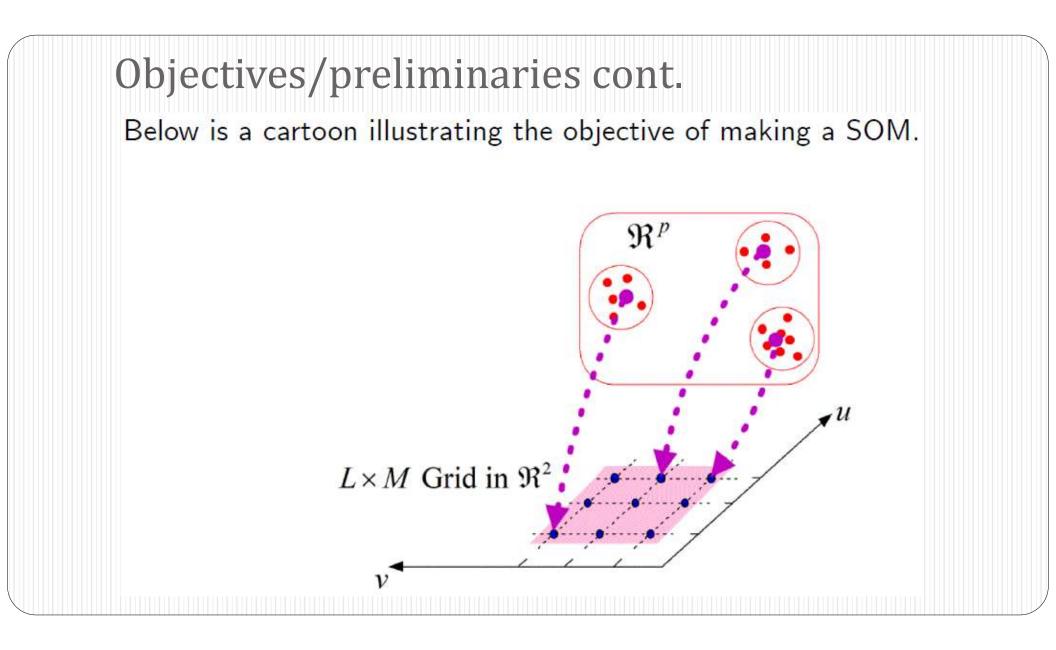
Self-Organizing Maps

Stephen Vardeman Analytics Iowa LLC ISU Statistics and IMSE

Objectives/preliminaries

For items $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r$ belonging to \Re^p , the object here is to find $L \times M$ cluster centers/prototypes that adequately represent the items, where one wishes to think of those cluster-centers/prototypes as indexed on an $L \times M$ regular grid in 2 dimensions (that we might take to be $\{1, 2, \ldots, L\} \times \{1, 2, \ldots, M\}$) with cluster-centers/prototypes whose index vectors are close on the grid being close in \Re^p . The object is both production of the set of centers/prototypes and also assignment of data points to centers/prototypes. In this way, this amounts to some kind of modified/constrained $K = L \times M$ group clustering problem.

This typically begins with standardization of the p coordinate variables x_j . This puts all of the x_j on the same scale and doesn't allow one coordinate of an \mathbf{x}_i to dominate a Euclidean norm.



Kohonen's SOM algorithms

Begin with some initial cluster centers $\{\mathbf{z}_{lm}^0\}_{l=1,...,L \text{ and } m=1,...,M}$ in \Re^p . This might be a random selection (without replacement or the possibility of duplication) from the set of items. It might be a set of grid points in the 2-d "plane" in \Re^p defined by the first two principal components of the items $\{\mathbf{x}_i\}_{i=1,...,r}$.

Then define neighborhoods on the $L \times M$ grid, N(I, m) (in \Re^2), that are subsets of the grid "close" to the various elements of the $L \times M$ grid. N(I, m) could be all of the grid, (I, m) alone, all grid points (I', m') within some constant 2-dimensional Euclidean distance, of (I, m), etc. Define a weighting function (for \Re^p), say $w(||\mathbf{x}||)$, so that w(0) = 1 and $w(||\mathbf{x}||) \ge 0$ is monotone non-increasing in $||\mathbf{x}||$. For some schedule of non-increasing positive constants $1 > \alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \cdots$, Kohonen's SOM algorithms iteratively define sets of cluster centers/prototypes $\{\mathbf{z}_{lm}^j\}$ for $j = 1, 2, \ldots$ Kohonen's "online" SOM version At iteration j, an "online" version of SOM selects (randomly or in turn from a randomly set ordering of the items) an item x^{j} and

- 1. identifies the center/prototype \mathbf{z}_{lm}^{j-1} closest to \mathbf{x}^{j} in \Re^{p} , call it \mathbf{b}^{j} and its grid coordinates $(I, m)^{j}$ (\mathbf{b}^{j} is the "BMU"/best-matching-unit),
- 2. adjusts those \mathbf{z}_{lm}^{j-1} with index vectors belonging $N\left((l,m)^{j}\right)$ (close to the BMU index vector on the 2-dimensional grid) toward \mathbf{x}^{j} by

$$\mathbf{z}_{lm}^{j} = \mathbf{z}_{lm}^{j-1} + \alpha_{j} w \left(\left\| \mathbf{z}_{lm}^{j-1} - \mathbf{b}^{j} \right\| \right) \left(\mathbf{x}^{j} - \mathbf{z}_{lm}^{j-1} \right)$$

(adjusting those centers different from the BMU potentially less dramatically than the BMU), and

3. for those \mathbf{z}_{lm}^{j-1} with index pairs (l, m) not belonging $N\left((l, m)^{j}\right)$ sets

$$\mathbf{z}_{lm}^{j} = \mathbf{z}_{lm}^{j-1}$$

iterating to convergence.

A "batch" SOM algorithm

At iteration *j*, a "batch" version of SOM updates *all* centers/prototypes $\left\{\mathbf{z}_{lm}^{j-1}\right\}$ to $\left\{\mathbf{z}_{lm}^{j}\right\}$ as follows. For each \mathbf{z}_{lm}^{j-1} , let \mathcal{X}_{lm}^{j-1} be the set of items for which the closest element of $\left\{\mathbf{z}_{lm}^{j-1}\right\}$ has index pair (l, m). Then update \mathbf{z}_{lm}^{j-1} as some kind of (weighted) average of the elements of $\bigcup_{(l,m)'\in N(l,m)}\mathcal{X}_{(l,m)'}^{j-1}$ (the set of \mathbf{x}_i closest to prototypes with labels that are 2-dimensional grid neighbors of (l, m)). A natural form of this is to set (with $\overline{\mathbf{x}}_{(l,m)}^{j-1}$ the sample mean of the elements of \mathcal{X}_{lm}^{j-1})

$$\mathbf{z}_{lm}^{j} = \frac{\sum_{(l,m)' \in \mathcal{N}(l,m)} w\left(\left\|\mathbf{z}_{lm}^{j-1} - \mathbf{z}_{(l,m)'}^{j-1}\right\|\right) \overline{\mathbf{x}}_{(l,m)'}^{j-1}}{\sum_{(l,m)' \in \mathcal{N}(l,m)} w\left(\left\|\mathbf{z}_{lm}^{j-1} - \mathbf{z}_{(l,m)'}^{j-1}\right\|\right)}$$

Comments on classical SOMs

It is fairly obvious that even if these Kohonen algorithms converge, different starting sets $\{\mathbf{z}_{lm}^0\}$ will produce different limits (symmetries alone mean, for example, that the choices $\mathbf{z}_{lm}^0 = \mathbf{u}_{lm}$ and $\mathbf{z}_{lm}^0 = \mathbf{u}_{L-l,M-m}$ produce what might look like different limits, but are really completely equivalent). Beyond this, what is provided by the 2-dimensional layout of indices of prototypes is not immediately obvious. It seems to be fairly common to compare an error sum of squares for a SOM to that of a $K = L \times M$ means clustering and to declare victory if the SOM sum is not much worse than the K-means value.

A more principled approach

Dissertation work of Rick Zhou takes a principled Bayesian modeling and decision-theoretic approach to the SOM objective. The following is an overview of his methodology.

To develop a useful ("generative") model for $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_r$ belonging to \Re^p , begin by defining p (one for each dimension of the data vectors) 0 mean Gaussian spatial processes

$$\zeta_1(u, v), \zeta_2(u, v), \ldots, \zeta_p(u, v)$$

and set

$$\zeta(u,v) = \begin{pmatrix} \zeta_1(u,v) \\ \vdots \\ \zeta_p(u,v) \end{pmatrix}$$

More modeling

 $\zeta(u, v)$ defines a continuous random map $\Re^2 \to \Re^p$. For $L \times M$ points $\rho = (I, m)$ on an integer grid in \Re^2 take $\zeta(I, m)$ as the center of a data-generating mechanism in \Re^p . Assume that $\mathbf{x}_1, \ldots, \mathbf{x}_r$ are iid as follows. First, one of the $L \times M$ fixed points $\rho = (I, m)$ on the grid of interest is chosen at random and conditioned on this choice

 $\mathbf{x} \sim \mathsf{MVN}\left(\mathbf{\zeta}\left(\mathbf{
ho}
ight)$, $\mathbf{\Sigma}_{oldsymbol{
ho}}
ight)$

Upon supplying suitable (values of or) prior distributions for the parameters of the p Gaussian processes and priors for the covariance matrices $\Sigma_{l,m}$, MCMC will for observable $\mathbf{x}_1, \ldots, \mathbf{x}_r$ and corresponding latent ρ_1, \ldots, ρ_r produce samples from a posterior distribution over all of

 $\rho_1, \rho_2, \dots, \rho_r$ $\zeta_j(\rho)$ for all points ρ in the grid and $j = 1, 2, \dots, p$ Σ_ρ for all points ρ in the grid

Computing and an objective

The grid points for the *r* cases, ρ_1, \ldots, ρ_r , are of most interest. Two cases \mathbf{x}_i and $\mathbf{x}_{i'}$ belong to the the same cluster if $\rho_i = \rho_{i'}$. The MCMC provides relative frequencies that approximate posterior probabilities that case *i* and case *i'* belong together, $P[\rho_i = \rho_{i'}]$. That is, one obtains an estimate $\hat{\mathbf{C}}$ of the matrix

$$\mathbf{C}_{r \times r} = (P[\rho_i = \rho_{i'}])_{\substack{i=1,2,...,r\\i'=1,2,...,r}}$$

through MCMC relative frequencies and may seek an assignment of data points to grid points that

- 1. is consistent with C, and
- (at least locally) more or less preserves relative distances between clusters in R^p in terms of distances between corresponding grid points in R².

Posterior average disagreement penalty For an assignment of data points to grid points α (that maps $\{1, 2, ..., r\}$ to the set of pairs of indices $\rho = (i, j)$ in the grid) consider two types of penalties, one for inconsistency with **C** and another for failure to preserve distances. A measure of disparity between partitions of $\{1, 2, ..., r\}$ corresponding to $\rho_1, ..., \rho_r$ and to $\alpha_1, ..., \alpha_r$ is for a > 0 and b > 0

$$L\left(\left(\boldsymbol{\rho}_{1},\ldots,\boldsymbol{\rho}_{r}\right),\left(\boldsymbol{\alpha}_{1},\ldots,\boldsymbol{\alpha}_{r}\right)\right) = \sum_{i < i'} aI\left[\boldsymbol{\rho}_{i} = \boldsymbol{\rho}_{i'} \text{ and } \boldsymbol{\alpha}_{i} \neq \boldsymbol{\alpha}_{i'}\right] \\ + \sum_{i < i'} bI\left[\boldsymbol{\rho}_{i} \neq \boldsymbol{\rho}_{i'} \text{ and } \boldsymbol{\alpha}_{i} = \boldsymbol{\alpha}_{i'}\right]$$

The average of this with respect to the posterior distribution is

$$a\sum_{i$$

Penalty for inconsistency with *C*

So a plausible penalty for inconsistency with ${\boldsymbol C}$ is

$$\mathsf{R}_1\left(\left(\pmb{\alpha}_1,\ldots,\pmb{\alpha}_r\right),\mathbf{C},\lambda
ight)=rac{1}{r\left(r-1
ight)}\sum_{i< i'} I\left[\pmb{\alpha}_i=\pmb{\alpha}_{i'}
ight]\left(\lambda-c_{i,i'}
ight)$$

In the penalty $R_1((\alpha_1, \ldots, \alpha_r), \mathbf{C}, \lambda)$ the parameter $\lambda \in (0, 1)$ determines what kinds of partitions of $\{1, 2, \ldots, r\}$ are most heavily penalized. Large λ tends to heavily penalize $(\alpha_1, \ldots, \alpha_r)$ prescribing large clusters, and small λ tends to heavily penalize $(\alpha_1, \ldots, \alpha_r)$ with small clusters.

Penalty for failure to preserve distances

Consider then penalizing failure to preserve distances. Define maximum distances

$$M_{\text{grid}} = \max_{\substack{\rho \text{ and } \rho' \text{ on the grid} \\ M_{\text{data}}} = \max_{\substack{i,i'}} \left\| \mathbf{x}_i - \mathbf{x}_{i'} \right\|$$
 and

And define for $r \in \{1, 2, ..., K\}$ the sets \mathcal{N}_K consisting of those pairs *i* and *i'* such that at least one of the points \mathbf{x}_i and $\mathbf{x}_{i'}$ is in the *K*-nearest neighborhood of the other.

Penalty for failure to preserve distances cont. Then, a "local multi-dimensional scaling" type penalty for an assignment of data points to grid points is

$$R_{2}\left(\left(\boldsymbol{\alpha}_{1},\ldots,\boldsymbol{\alpha}_{r}\right),\boldsymbol{K},\tau\right)=\frac{1}{K^{2}}\left\{\begin{array}{c}\sum_{\substack{i< i' \text{ s.t.}\\(i,i')\in\mathcal{N}_{K}}}\left(\frac{\|\mathbf{x}_{i}-\mathbf{x}_{i'}\|}{M_{\text{data}}}-\frac{\|\boldsymbol{\alpha}_{i}-\boldsymbol{\alpha}_{i'}\|}{M_{\text{grid}}}\right)^{2}\\-\tau\sum_{\substack{i< i' \text{ s.t.}\\(i,i')\notin\mathcal{N}_{K}}}\frac{\|\boldsymbol{\alpha}_{n}-\boldsymbol{\alpha}_{n'}\|}{M_{\text{grid}}}\end{array}\right\}$$

for a $\tau > 0$. (The first term penalizes failure to preserve local relative distances and the second encourages separation of mappings of points on the grid that are not neighbors in the \Re^p data set.)

Approximately minimum posterior risk So, a sensible risk/figure of merit for a map α is for $\lambda > 0$

$$R\left(\left(\boldsymbol{\alpha}_{1},\ldots,\boldsymbol{\alpha}_{r}\right),\hat{\mathbf{C}},\lambda,K,\gamma,\tau\right)$$

= $R_{1}\left(\left(\boldsymbol{\alpha}_{1},\ldots,\boldsymbol{\alpha}_{r}\right),\hat{\mathbf{C}},\lambda\right) + \gamma R_{2}\left(\left(\boldsymbol{\alpha}_{1},\ldots,\boldsymbol{\alpha}_{r}\right),K,\tau\right)$

Exact optimization of $R((\alpha_1, \ldots, \alpha_r), \hat{\mathbf{C}}, \lambda, K, \gamma, \tau)$ by choice of $(\alpha_1, \ldots, \alpha_r)$ is rarely computationally possible. What *is* possible and seems to work well is to make a long MCMC run (making the estimate $\hat{\mathbf{C}}$ reliable) and then look for an MCMC iterate $(\rho_1^j, \ldots, \rho_r^j)$ with the best value of $R((\rho_1^j, \ldots, \rho_r^j), \hat{\mathbf{C}}, \lambda, K, \gamma, \tau)$. The Bayes model behind the MCMC tends to concentrate the posterior (and thus make iterates) in a manner consistent with the clustering and distance preservation goals of SOM.

A real example

The famous "Wines" data set has p = 13 chemical characteristics of r = 178 wine samples from 3 different cultivars (59 (red) samples. 71 (blue) samples, and 48 (violet) of the three types indexed 1-59, 60-130 and 131-178 respectively). The figure on the next panel is a graphical (grey-scale) representation of $\hat{\mathbf{C}}$ and a corresponding best iterate $\left(\rho_1^j, \ldots, \rho_r^j\right)$ from an MCMC run (taken from the PhD dissertation of Zhou).

