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“Sparse” PCs objective

In standard principal components analysis, the v; are sometimes called
"loadings" because (in light of the fact that z; = Xv;) they specify what
linear combinations of variables x; are used in making the various principal
component vectors. |f the v; were "sparse" (had lots of 0's in them)
Interpretation of these loadings would be easier. So people have made
proposals of alternative methods of defining "principal components" that
will tend to produce sparse results. One due to Zou is as follows.
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A 15t “sparse PC direction”

One might call a v € R” a first sparse principal component "direction" (it
won't typically be a unit vector) if it is part of a minimizer (over choices of
v E RP and 0 € RP with ||8]| = 1) of the criterion

N
Y lIxi — 8v'x||* + A v |2+ Aq v (1)
=

for ||-||; the 1 norm on R” and constants A > 0 and A1 > 0. The last
term in this expression is analogous to the lasso penalty on a vector of
regression coefficients and produces the same kind of tendency to "0 out"
entries that we saw in that context. If A; = 0, the optimizing v is
proportional to the ordinary first principal component direction. In fact, if
A=A1 =0and N > p, v= 0 and the ordinary first principal component
direction /s the optimizer.




Multiple “sparse PC directions”

For multiple components, an analogue of the first case is a set of K
vectors v, € RP organized into a p X K matrix V that is part of a
minimizer (over choices of p X K matrices V and p x K matrices ® with

©'® = 1) of the criterion
N 5 K 5 K
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for constants A > 0 and Ay, > 0. Zou has apparently provided effective
algorithms for optimizing criteria (1) or (2).




Non-negative matrix factorization objective

There are contexts (for example, when data are counts) where it may not
make Intuitive sense to center inherently non-negative variables, so that X
Is naturally non-negative, and one might want to find non-negative
matrices W and H such that

X =~ W H
N x Nxrrxp

P
Here the emphasis might be on the columns of W as representing
"positive components" of the (positive) X, just as the columns of the
matrix UD in SVD's provide the principal components of X. Various
optimization criteria could be set to guide the choice of W and H.
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Possible precise formulations

One might try to minimize

i Y- (- (WH)U)E

F=11 y=—i]

or maximize
N p
ZZ (i In (WH); — (WH), )

over non-negative choices of W and H, and various algorithms for doing
these have been proposed. (Notice that the second of these criteria is an
extension of a loglikelihood for independent Poisson variables with means
entries in WH to cases where the x;; need only be non-negative, not
necessarily integer.)




Fundamental limitations

While at first blush this enterprise seems sensible, there is a lack of
uniqueness Iin a factorization producing a product WH, and therefore how
to interpret the columns of one of the many possible W's is not clear.

(An easy way to see the lack of uniqueness is this. Suppose that all
entries of the product WH are positive. Then for E a small enough (but
not 0) matrix, all entries of W* =W (1 +-E) # W and

H" = (I + E) 'H =+ H are positive, and W'H" = WH.) Lacking some
natural further restriction on the factors W and H (beyond non-negativity)
it seems the practical usefulness of this basic idea is also lacking.




Archetypal analysis

Another approach to finding an interpretable factorization of X was

provided by Cutler and Breiman in their "archetypal analysis." Again one
means to write
X =~ W H
N xp Nxrrxp
for appropriate W and H. But here two restrictions are imposed, namely

1. the rows of W are probability vectors (so that the approximation to X
is in terms of convex combinations/weighted averages of the rows of

H), and

2. H = B X where the rows of B are probability vectors (so that
F¥ rxN Nxp

the rows of H are in turn convex combinations/weighted averages of
the rows of X).

The r rows of H = BX are the "prototypes" (7archetypes?) used to
U represent the data matrix X.
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Optimization problem

With this notation and restrictions, (stochastic matrices) W and B are
chosen to minimize

X — WBX|*

It's clearly possible to rearrange the rows of a minimizing B and make
corresponding changes in W without changing || X — WBXHQ. So strictly
speaking, the optimization problem has multiple solutions. But in terms
of the set of rows of H (a set of prototypes of size r) it's possible that this
optimization problem often has a unique solution. (Symmetries induced in
the set of N rows of X can be used to produce examples where it's clear
that genuinely different sets of prototypes produce the same minimal value
of |[X — WBX||”. But it seems likely that real data sets will usually lack
such symmetries and lead to a single optimizing set of prototypes.)




LLimitations

Emphasis in this version of the "approximate X" problem is on the set of
prototypes as "representative data cases." This has to be taken with a
grain of salt, since they are nearly always near the "edges" of the data set.
This should be no surprise, as line segments between extreme cases in P
can be made to run close to cases in the "middle" of the data set, while
line segments between interior cases in the data set will never be made to

run close to extreme cases.




p
Independent Component Analysis set-up

Suppose that X is of rank p and has been centered. Based on the SVD

X =U DV

Nxp  NxppXppXp

consider the "sphered" version of the data matrix
X* = VNXVD™!

so that the sample correlation matrix is

1 #/ *

N (X X ) —

The columns of X" are then scaled principal components of the (centered)
data matrix and we operate with and on X*. (For simplicity of notation,

i we'll henceforth drop the "x" on X.)
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ICA objective

ICA Is an attempt to find latent probabilistic structure in terms of
Independent variables to account for the principal components. In
particular (in its linear form) ICA attempts to model the N (transposed)

rows of X as i1id of the form

X; — A S (1)

px1 PXPpx1

for iid vectors s;, where the (marginal) distribution of the vectors s; is one
of independence of the p coordinates/components and the matrix A is an

unknown parameter. We'll assume that Covx = | and without any loss of
generality assume that the covariance matrix for s is not only diagonal, but

that Covs = |. Since then | =Covx = A (Covs) A"’ = AA’, A must be

orthogonal, and so
A'x =s




ICA objective cont.

n n e o Af
If one can estimate A with an orthogonal A then s; = A x; serves as an
estimate of what vector of independent components led to the ith row of

X and indeed
S =XA

has columns that provide predictions of the N (row) p-vectors s’, and we
might thus call those the "independent components" of X (just as we
term the columns of XV the principal components of X). There is a bit
of arbitrariness in the representation (1) because the ordering of the
coordinates of s and the corresponding rows of A is arbitrary. But this is
no serious concern.




Estimating A and K-L divergence

The question is what one might use as a method to estimate A in (1).

There are several possibilities. One discussed in HTF is related to entropy

and Kullback-Leibler divergence. If one assumes that a (p-dimensional)

random vector Y has a density f, with marginal densities f1, f5,. .., f, then
P

an "independence version" of the distribution of Y has density [] f; and

J=1
the K-L divergence of the distribution of Y from its independence version is

K (f, i zj-) —/f(y)ln pfm dy
= I1f ()

=1




Estimating A and K-L divergence cont.
Then

K (fﬁﬂ) Z/f(Y)lnf(y) dy—i/fm(lnﬁ'(m)dy
= [fynfy dy—Zf (i) (In £ () dy;
= YH(Y) - H(Y)

for 'H the entropy function for a random argument, and this K-L
divergence is a kind of (non-negative) difference between the information
carried by Y (jointly) and the sum across the components of their
individual information contents.




ICA matrix optimization problem

If one then thinks of s as random and of the form A’x for random x, it is
perhaps sensible to seek an orthogonal A to minimize (for for a; the jth
column of A)
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f Approximate ICA objective criterion

This is equivalent (for orthogonal A) to maximization of
. !
C(A)=) (H(z)—H(aix)) (2)
j=1
for z standard normal and a common approximation is

(H (z) — H (alx)) = (EG (z) — EG (ax))

for G (u) = LIncosh (cu) for a c € [1,2]. Then, criterion (2) has the
empirical approximation

p N 2
Ca)y=) (EG ) -y L6 (a}x‘;))

i where, X’ is the ith row of X. A can be taken to be an optimizer of C (A).




ICA interpretation

Ultimately, this development produces a rotation matrix that makes the p
entries of rotated and scaled principal component score vectors "look as
Independent as possible." This is thought of as resolution of a data matrix

Into its "independent sources" and as a technique for "blind source

separation.”




