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Abstract

This set of notes is the most recent reorganization and update-in-
progress of Modern Multivariate Statistical Learning course material de-
veloped 2009-2020 over 7 offerings of PhD-level courses and 4 offerings of
an MS-level course in the Iowa State University Statistics Department, a
short course given in the Statistics Group at Los Alamos National Lab,
and two offered through Statistical Horizons LLC. Early versions of the
courses were based mostly on the topics and organization of The Elements
of Statistical Learning by Hastie, Tibshirani, and Friedman, though very
substantial parts benefited from Izenman’s Modern Multivariate Statis-
tical Techniques, and from Principles and Theory for Data Mining and
Machine Learning by Clarke, Fokoué, and Zhang.

The present version benefits from a thougtful set of written comments
on an earlier iteration of the notes provided by Ken Ryan and Mark Culp,
incisive observations on the material and suggestions concerning what
I’ve said about it made by Max Morris and Huaiqing Wu during the MS-
level course we taught together Spring 2014, additional helpful critques
offered by LANL statisticians in Summer 2016, and material from Bishop’s
Pattern Recognition and Machine Learning, Applied Predictive Modeling
by Kuhn and Johnson, and An Introduction to Statistical Learning by
James, Witten, Hastie, and Tibshirani. The work of a number of ISU
PhD and MS advisees inlcuding Jing Li, Wen Zhou, Cory Lanker, Andee
Kaplan, and Abhishek Chakraborty has also provided useful additional
content reflected in this version.

These notes have as prerequisites the Statistical Theory, Methods, and
Computing content of the first year courses in a Statistics MS program,
though presumably much of them can be understood with less background.
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Part I

Introduction, Generalities, and
Some Background Material
1 Overview/Context

1.1 Notation and Terminology

These notes are about "statistics for ‘big data’" (AKA "machine learning" and
"data analytics"). We begin with the standard statistical notation and set-up
where one has data from N cases on p or p + 1 variables, x1, x2, . . . , xp and
possibly y portrayed below:

Variables

Cases

x11 x12 · · · x1p y1
x21 x22 · · · x2p y2
...

...
. . .

...
...

xN1 xN2 · · · xNp yN

In statistical machine learning, this dataset is typically called the training
dataset and we’ll call it T . Variables are often referred to as features, and
cases are sometimes called instances. We’ll use standard matrix (and linear
models) notation, beginning with

xi = (xi1, xi2, . . . , xip)
′

for the case/row i set of x values (in column vector form unless otherwise indi-
cated) and

X
N×p

=


x′1
x′2
...
x′N

 , Y
N×1

=


y1
y2
...
yN

 , and T = (X,Y )

for the training data.
As in all of statistics, the basic objective is identifying, describing, and

enabling the practical use of simple (low-dimensional/low-order) structure rep-
resented in the N × p or N × (p+ 1) data array. Most "classical" statistical
methods are implicitly aimed at situations where

• both N and p are small (data are scarce), and

• quantifications of the level of information the data provide about parame-
ters of a probability model are central.
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Here we treat cases where at least one of N or p can be large and there is little
fundamental interest in model parameters or exactly how much we know about
them.
The ambivalence toward making statements concerning parameters of any

probability models employed (including those that would describe the amount
of variation in observables the model generates) is a fundamental difference be-
tween a machine learning point of view and that common in basic graduate
statistics courses. This posture is perhaps sensible enough, as careful examina-
tion of a large training set will usually show that standard (tractable) probability
models are highly imperfect descriptions of complex situations.
Standard versions of problems addressed here are:

• supervised learning problems1 , where there is a response/output vari-
able or target, y, and the problem is one of finding a function of p inputs
x, f (x), that approximates y. When the form of f depends on the train-
ing set, we’ll write ŷ = f̂ (x). Where y is a measured/continuous variable
the problem is typically called prediction. Where y takes values in a
finite set like {1, 2, . . . ,K}, the problem is typically called classification
(or sometimes pattern recognition). In these notes, we will on occasion
wish to refer simultaneously to both standard forms of supervised learning
and may then treat the word "prediction" as including both cases.

• unsupervised learning problems, where there is no response variable.
The general objective here is then to identify relationships among the p
variables x or commonalities in segments of the N cases, i.e. interpretable
low-order structure in the data. Standard versions of this are clustering,
principal components analysis, and multi-dimensional scaling.

1.2 What is New Here (Particularly in Prediction)?

Reasonable questions here are "What is the big deal?" and "What new issues
arise in ‘statistics for big data’?"
Where N and/or p are large, limitations on computing time or computer

memory can make straightforward implementation of standard methods imprac-
tical or even impossible. Sometimes more clever implementations (for example
employing parallelization or use of specialized hardware) make application of
standard methods feasible. (These are matters that won’t be much considered
in these notes.) At other times, new methods need to be developed.

1.2.1 Matching Complexity to Training Set Information Content

Where N is big and p is small, standard statistical prediction methods (like
multiple linear regression) will produce precisely fit but relatively crude pre-
dictors ... whose forms, while perhaps adequate as first approximations to a
real relationship between x and y (and about all that can be fit based on a

1 In this context the input variables x are "covariates" in standard statistical parlance.
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small dataset), fail to really make full use of the available information. There
is the possibility of either increasing "p" by (implicitly or explicitly) building
additional features from existing ones and/or simply using more sophisticated
and flexible forms for prediction (that go beyond, for example, the basic linear
form in the input variables of multiple linear regression). But there is also
the potential to "over-do" and effectively make p too large or the predictor too
flexible. One must somehow match predictor complexity to the real
information content of a (large) training set. It is this need and the
challenge it represents that makes the area interesting and important.

1.2.2 The "Curse of Dimensionality"

If p is at all big, <p is "huge" and our intuition about how many cases would
be required to "fill up" even an intuitively small part of p-space is very poor.
Essentially any dataset with large p is necessarily "sparse." There are many
ways of framing this inescapable sparsity. Some simple ones involve facts about
uniform distributions on the unit ball in <p

{x ∈ <p| ‖x‖ ≤ 1}

and on a unit cube centered at the origin

[−.5, .5]
p

For one thing, "most" of these distributions are very near the surface of the
solids. The cube [−r, r]p capturing (for example) half the volume of the cube
(half the probability mass of the distribution) has

r = .5 (.5)
1/p

which converges to .5 as p increases. Essentially the same story holds for the
uniform distribution on the unit ball. The radius capturing half the probability
mass has

r = (.5)
1/p

which converges to 1 as p increases. Points uniformly distributed in these
regions are mostly near the surface or boundary of the spaces.
Another interesting calculation concerns how large a sample must be in order

for points generated from the uniform distribution on the ball or cube in an iid
fashion to tend to "pile up" anywhere. Consider the problem of describing the
distance from the origin to the closest of N points drawn iid uniformly from the
p-dimensional unit ball. With

R = the distance from the origin to a single random point ,

R has cdf

F (r) =

 0 r < 0
rp 0 ≤ r ≤ 1
1 r > 1

10



So if R1, R2, . . . , RN are iid with this distribution, M = min {R1, R2, . . . , RN}
has cdf

FM (m) =


0 m < 0

1− (1−mp)
N

0 ≤ m ≤ 1
1 m > 1

This distribution has, for example, median

F−1M (.5) =

(
1−

(
1

2

)1/N)1/p

For, say, p = 100 and N = 106, the median of the distribution of M is .87.
In retrospect, it’s not really all that hard to understand that even "large"

sets of points in <p must be sparse. After all, it’s perfectly possible for p-vectors
u and v to agree perfectly on all but one coordinate and be far apart in p-space.
There simply are a lot of ways for two p-vectors to differ!
In addition to these kinds of considerations of sparsity, there is the fact

that the potential complexity of functions of p variables explodes exponentially
in p. CFZ point this out and go on to note that for large p, all datasets
exhibit multicollinearity (or its generalization to non-parametric fitting) and its
accompanying problems of reliable fitting and extrapolation. These and related
issues together constitute what is often called the curse of dimensionality.
The curse implies that even "large" N doesn’t save one and somehow make

practical large-p prediction only a trivial application of standard parametric or
non-parametric regression methodology. And when p is large, it is essentially
guaranteed that if one uses a method that is "too" flexible in terms of the rela-
tionships between x and y that it permits, one will be found, real/fundamental/
reproducible or not. That is, the (common for large p) possibility that a dataset
is (sparse and) not really adequate to support the use of a (flexible) supervised
statistical learning method can easily lead to overfitting. This is the pres-
ence of what appears to be a strong pattern in a (sparse) training set that
generalizes/extrapolates poorly to cases outside the training set.
In light of the foregoing, one standard way of choosing among various "big

data" statistical procedures for a given dataset is to define both 1) a reliable
measure of estimated/predicted performance (like an estimated prediction mean
square error) and 2) a measure of complexity (like an "effective number of fitted
parameters") for a predictor. Then one attempts to optimize (by choice of
complexity measure) the predicted performance. In light of the overfitting
issue, the method predicting performance almost always employs some form of
"holdout" sample, whereby performance is evaluated using data not employed
in fitting/predictor development.2

2This approach potentially addesses the detection of both overfitting and "model bias"
(where a fitted form is simply not adequate to represent the relationship between input vari-
ables and a target).
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1.3 Some Initial Generalities About Prediction

1.3.1 Representing What is Known: Creating a Training Set for
Prediction

We began exposition with an N × (p+ 1) data matrix conceptually already in
hand. It is important to say that in real predictive analytics problems, the
reduction of all information available and potentially relevant to explaining y to
values of p predictor variables3 (that encode relevant "features" of theN cases) is
an essential and highly critical activity. If one defines good features/variables
(ones that effectively and parsimoniously represent the N cases), then sound
statistical methodology has a chance of being practically helpful. Poor initial
choice of features limits how well one can hope to do in prediction.
This is particularly important to bear in mind where information from many

disparate databases or sources is used to create the training set/data matrix T
available for statistical analysis. In this way, in many applications of modern
data analytics the hard work begins substantially before the formal technical
subjects addressed in these notes come into play, and the quality of the work in
those initial steps is critical to ultimate success. All that follows in these
notes takes the particular form of training set adopted by a data
analyst as given, and that choice governs and limits what is possible
in terms of effective prediction.
We should also note that in a typical analytics problem, variables represented

by the columns of a data matrix are in different units and often represent con-
ceptually different kinds of quantities (e.g., one might represent a voltage while
another represents a distance and another represents a temperature). In some
kinds of analyses this is completely natural and causes no logical problems. But
in others (particularly ones based on inner products of data vectors or distances
between them and/or where sizes of multipliers of particular variables in a linear
combination of those variables are important) one gets fundamentally different
results depending upon the scales used.
One surely doesn’t want to be in the position of having ultimate predictions

depend upon whether a distance (represented by a coordinate of x) is expressed
in km or in nm. And the whole notion of the <2 distance between two data
vectors where the first coordinate of each is a voltage and the second is a tem-

perature seems less than attractive. (What is
√

(3 kV)
2

+ (2◦K)
2 supposed to

mean?)
A sensible approach to eliminating logical diffi culties that arise in using

methods where scaling/units of variables matters, is to standardize predictors
x (and center any quantitative response variable, y) before beginning analysis.
That is, if a raw feature x has in the training set a sample standard deviation4

3This is at least one common meaning of the term "data mining."
4While it doesn’t really matter which one uses, the "N" divisor in place of the "N − 1"

divisor seems slightly simpler as it makes the columns have <N norm
√
N as opposed to norm√

N − 1.
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sx and a sample mean x̄, one replaces it with a feature

x′ ≡ x− x̄
sx

(thereby making all features unit-less). Conclusions about standardized input
x′ and centered response y′ = y−ȳ then translate naturally to conclusions about
the raw variables via

x = sx · x′ + x̄ and y = y′ + ȳ

1.3.2 Theoretically Optimal (Unrealizable) Predictors

In the context of supervised learning and the objective of choosing f (x) to
track y, suppose that P is a ((p+ 1)-dimensional) distribution for (x, y) and
L (ŷ, y) ≥ 0 is a loss function for penalizing prediction/classification ŷ when y
holds. Let "E" be the P expectation operator. Unless specifically noted to
the contrary, all expectations refer to distributions and conditional distributions
derived from P . In general, if we need to remind ourselves what variables are
being treated as random in probability, expectation, conditional probability, or
conditional expectation computations, we will superscript E or P with their
names.) Write E[·|x] for conditional expectation and Var[·|x] for conditional
variance (based on the conditional distribution of y|x) derived from P .

As a thought experiment (not yet as anything based on the training data)
consider choosing a functional form f (NOT yet f̂) to minimize risk (or "pre-
diction error")

EL (f (x) , y)

In theory (given P ) this is "easy." One writes the expectation in iterated fashion,

EL (f (x) , y) = EE [L (f (x) , y) |x]

and notes that an optimal f (x) is thus

f (x) = arg min
a

E [L (a, y) |x] (1)

the action/prediction that minimizes conditional (on the value of x) expected
(over y) loss.

SEL In the simple case of squared error loss, i.e. where

L (ŷ, y) = (ŷ − y)
2

an optimal f in display (1) is then well-known to be

f (x) = E [y|x]

the conditional mean of y|x.
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Classification In a classification context, where y takes values in G = {1, 2, . . . ,K}
(or, completely equivalently, G = {0, 1, . . . ,K − 1}), one might use the (0-1) loss
function

L (ŷ, y) = I [ŷ 6= y]

An optimal f corresponding to form (1) is then

f (x) = arg min
a

∑
v 6=a

P [y = v|x]

= arg max
a

P [y = a|x]

= arg max
a

P [y = a] p (x|a) (2)

(where p (x|y) is a density for the class-conditional distribution of x|y).
A simple generalization of 0-1 loss is one that for different values of y charges

potentially different losses ly ≥ 0 when ŷ 6= y, that is,

L (ŷ, y) = lyI [ŷ 6= y]

Essentially the same argument as above implies that an optimal f for this pos-
sibly asymmetric loss is

f (x) = arg min
a

∑
v 6=a

lvP [y = v|x]

= arg max
a

laP [y = a|x]

= arg max
a

laP [y = a] p (x|a)

Another Problem in Classification Models In a classification model as
immediately above, one might have in mind assessment of the set of likelihoods
that y = k based on x. That would call for the making of a K-dimensional
predictor ŷ and appropriate definition of a loss. One simple possible loss is a
sum of squared errors

L (ŷ, y) =

K∑
k=1

(ŷk − I [y = k])
2

for which it is easy to show that an optimal vector predictor is

f (x) = (P [y = |x] , P [y = 2|x] , . . . , P [y = K|x]) (3)

For many purposes (see, e.g., Section 8.2) a more appropriate loss is the
"cross-entropy loss"

L (ŷ, y) = −
K∑
k=1

I [y = k] ln ŷk (4)

What is perhaps not immediately obvious is that a Lagrange multiplier argu-
ment shows that subject to the constraint that the ŷk are positive and sum to
1, the vector predictor (3) is also optimal for cross-entropy loss (4).
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1.3.3 Nearest Neighbor Rules

One idea that create a spectrum of predictor flexibilities (including extremely
high ones) is to operate completely non-parametrically and to think that if N
is "big enough," something like

1

# of xi = x

∑
i with
xi=x

yi (5)

might work as an approximation to E[y|x] in SEL prediction problems and

1

# of xi = x

∑
i with
xi=x

I [yi = a] (6)

might work as an approximation for P [y = a|x] in aK-class classification model.
But almost always (unless N is huge and the distribution of x is discrete) the
number of xi = x is 0 or at most 1 (and absolutely no extrapolation beyond the
set of training inputs is possible). So some modification is typically required.
The condition

xi = x

might be replaced with
xi ≈ x

in expression (5) and/or (6).
One form of this is to first define for each x the "k-neighborhood"

nk (x) = the set of k inputs xi in the training set closest to x in <p

A k-nearest neighbor (k-nn) approximation to E[y|x] is then

m (x) =
1

k

∑
i with
xi∈nk(x)

yi

suggesting the SEL prediction rule

f̂ (x) = m (x)

Similarly, a k-nearest neighbor approximation to an optimal 0-1 loss classifica-
tion rule in a K-class classification model is

f̂ (x) = arg max
a

∑
i with

xi∈nk(x)

I [yi = a]

One might hope that upon allowing k to increase with N (provided that P is
not too bizarre—one is counting, for example, on the continuity of E[y|x] in x)
these could be effective predictors. They are surely (for small k) highly flexible
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predictors and they and things like them often fail to be effective because of
the curse of dimensionality. (In high dimensions, k-neighborhoods are almost
always huge in terms of their extent. There are simply too many ways that a
pair of training inputs xi can differ.
It is worth noting that

ma (x) =
1

k

∑
i with
xi∈nk(x)

I [yi = a]

is a k-nearest neighbor approximation to

E [I [y = a] |x] = P [y = a|x]

in a K-class model, and for some purposes knowing this is more useful than
knowing the 0-1 loss k-nn classification rule.
Ultimately, one should view the k-nn idea as an important, almost decep-

tively simple, and highly useful one. k-nn rules are approximately optimal
predictors (for both SEL and 0-1 loss problems) that span a full spectrum of
complexities/flexibilities specified by the simple parameter k (the neighborhood
size). Whether or not they can be effective in a given application depends upon
the size of p and N and the extent to which there is some useful structure latent
in the distribution of xs in the input space (mitigating the effects of the curse
of dimensionality).

1.3.4 General Decomposition of the Expected Prediction Loss for f̂

Now suppose that the training data (xi, yi) for i = 1, . . . , N are iid according
to P , independent of a single (x, y) that is also P distributed.5 Write ET for
averaging with respect to PN (i.e. for averaging out over the training data),
and E(x,y) for averaging with respect to the distribution P of (x, y).

For f̂ a predictor based on the training data T (a function of both x and
T ), a measure of average effectiveness of f̂ is the prediction error6

Err ≡ ETE(x,y)
[
L
(
f̂ (x) , y

)]
(7)

If f (x) is a theoretically optimal predictor of y under loss L and joint distri-
bution P , training set T is used to select a function (say gT ) from a class of
functions S = {g} having expected loss E(x,y)L (g (x) , y) < ∞, and ultimately
one uses as a predictor

f̂ (x) = gT (x) ,

the situation is as in the cartoon in Figure 1, where g∗ is a minimizer of
E(x,y)L (g (x) , y) across g ∈ S.

5We will typically abuse notation and write (x, y) instead of (x′, y) despite the fact that
by convention x is a column vector.

6This quantity is sometimes called the "test error" and "generalization error" and these
names will also be used in our exposition and problem sets.
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Figure 1: Optimal, Restricted Optimal, and Fitted Predictors

The optimal f (x) is potentially (likely) outside of S. The "closest" one
can get to it inside of S is g∗, and lacking full knowledge of P one can only
approximate this best element of S by the random (as the choice depends upon
the training set T ) f̂ = gT (that is no better than g∗ for any training set!).

So, since here

Err = ETE(x,y)L
(
f̂ (x) , y

)
= ETE(x,y)L (gT (x) , y)

we have

Err = E(x,y)L (f (x) , y) +
(
E(x,y)L (g∗ (x) , y)− E(x,y)L (f (x) , y)

)
+
(
ETE(x,y)L (gT (x) , y)− E(x,y)L (g∗ (x) , y)

)
(8)

This says that Err for the training-set-dependent predictor is the sum of three
terms. The first is the minimum possible error. The second is the non-negative
difference between the best that is possible using a predictor constrained to be
an element of S and the absolute best that is possible. The third is the non-
negative difference between Err (that involves averaging over the training-set-
directed random choices of elements from S, none of which can have average
loss over (x, y) better than that of g∗) and the best that is possible using a
predictor constrained to be an element of S (namely the average loss of g∗ (x)).
So relationship (8) might be rewritten as

Err = minimum expected loss possible+modeling penalty

+ fitting penalty

Err can be inflated because S is too small (inducing model bias) or because
the sample size and/or fitting method are inadequate to make gT consistently
approximate g∗.
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1.3.5 A More Detailed Decomposition for Err in SEL Prediction and
Variance-Bias Trade-off

In the context of squared error loss, a more detailed decomposition of Err pro-
vides additional insight into the diffi culty faced in building effective predictors.
Note that a measure of the effectiveness of the predictor f̂ at x (under

squared error loss) is what we might call

Err (x) ≡ ETE
[(
f̂ (x)− y

)2
|x
]

(9)

For some purposes, other conditional versions of Err might be useful and ap-
propriate. For example

ErrT ≡ E(x,y)
(
f̂ (x)− y

)2
is another kind of prediction or test error (that is a function of the training
data). (What one would surely like—but surely cannot have—is a guarantee that
ErrT is small uniformly in T .) Note that in these notations what we have
called

Err ≡ ExErr (x) = ETErrT (10)

is a number, an expected squared difference between target and prediction.
In any case, a useful decomposition of Err(x) in display (9) is

Err (x) = ET
{(

f̂ (x)− E [y|x]
)2

+ E
[
(y − E [y|x])

2 |x
]}

= ET
{(

f̂ (x)− ET f̂ (x)
)2

+
(
ET f̂ (x)− E [y|x]

)2}
+Var [y|x]

= VarT
(
f̂ (x)

)
+
(
ET f̂ (x)− E [y|x]

)2
+Var [y|x] (11)

The first quantity in this decomposition, VarT
(
f̂ (x)

)
, is the variance of the

prediction at x. The second term,
(
ET f̂ (x)− E [y|x]

)2
, is a kind of squared

bias of prediction at x. And Var[y|x] is an unavoidable variance in outputs
at x. Highly flexible prediction forms may give small prediction biases at the
expense of large prediction variances. One may need to balance the two off
against each other when looking for a good predictor.
Now from expressions (10) and (11)

Err = ExErr (x)

= ExVarT
(
f̂ (x)

)
+ Ex

(
ET f̂ (x)− E [y|x]

)2
+ ExVar [y|x] (12)

The first term on the right here is the average (according to the marginal of x)
of the prediction variance at x. The second is the average squared prediction
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bias. And the third is the average conditional variance of y (and is not under
the control of the analyst choosing f̂ (x)). Consider a further decomposition of
the second term.
Suppose that T is used to select a function (say gT ) from some linear sub-

space, say S = {g}, of the space functions h with Ex (h (x))
2
< ∞, and that

ultimately one uses as a predictor

f̂ (x) = gT (x)

Since linear subspaces are convex

g∗∗ ≡ ET gT = ET f̂ ∈ S

Further, suppose that

g∗ ≡ arg min
g∈S

Ex (g (x)− E [y|x])
2

is the projection of (the function of x) E[y|x] onto the space S. Then write

h∗ (x) = E [y|x]− g∗ (x)

so that
E [y|x] = g∗ (x) + h∗ (x)

Then, it’s a consequence of the facts that Ex (h∗ (x) g (x)) = 0 for all g ∈ S
and therefore that Ex (h∗ (x) g∗ (x)) = 0 and Ex (h∗ (x) g∗∗ (x)) = 0, that

Ex
(
ET f̂ (x)− E [y|x]

)2
= Ex (g∗∗ (x)− (g∗ (x) + h∗ (x)))

2

= Ex (g∗∗ (x)− g∗ (x))
2

+ Ex (h∗ (x))
2

− 2Ex ((g∗∗ (x)− g∗ (x))h∗ (x))

= Ex
(
ET f̂ (x)− g∗ (x)

)2
+ Ex (E [y|x]− g∗ (x))

2 (13)

The first term on the right in the last line of display (13) is an average squared
fitting bias, measuring how well the average (over T ) predictor function approx-
imates the element of S that best approximates the conditional mean function.
This is a measure of how appropriately the training data are used to pick out
elements of S. The second term on the right is an average squared model bias,
measuring how well it is possible to approximate the conditional mean function
E[y|x] by an element of S. This is controlled by the size of S, or effectively the
flexibility allowed in the form of f̂ . Average squared prediction bias can thus
be large because the form fit is not flexible enough, or because a poor fitting
method is employed.
Then using expressions (12) and (13)

Err = ExVar [y|x] + Ex (E [y|x]− g∗ (x))
2

+ Ex
(
ET f̂ (x)− g∗ (x)

)2
+ ExVarT

(
f̂ (x)

)
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So this SEL decomposition of Err is related to the general one in display (8) in
that

minimum expected loss possible = expected (across x) response variance

= ExVar [y|x] ,

modeling penalty = expected (across x) squared model bias

= Ex (E [y|x]− g∗ (x))
2
,

and

fitting penalty =

(
expected (across x)
squared fitting bias

)
+

(
expected (across x)
prediction variance

)
= Ex

(
ET f̂ (x)− g∗ (x)

)2
+ ExVarT

(
f̂ (x)

)
The facts that

1. what is under the control of a data analyst, namely the modeling and
fitting penalties, has elements of both bias and variance and

2. complex predictors tend to have low bias and high variance in comparison
to simple ones

leads to the necessity of balancing these elements in predictor development and
the so-called variance-bias trade-off. Once more, in qualitative terms, it is
the matching of predictor complexity to real information content of
a training set that is at issue here.

1.3.6 Approximating Err and Cross-Validation

In rough terms, standard methods of constructing predictors all have associated
"complexity parameters" (like k for k-nearest neighbor methods, numbers and
types of features/basis functions or "ridge parameters" used in regression meth-
ods, and penalty weights/band-widths/neighborhood sizes applied in smoothing
methods) that are at the choice of a user. Depending upon the choice of com-
plexity, one gets more or less flexibility in the form f̂ . If a choice of complexity
doesn’t allow enough flexibility in the form of a predictor, underfit occurs and
there is large bias in prediction. On the other hand, if the choice allows too much
flexibility, bias may be reduced, but the price typically paid is large variance of
prediction and overfit. It is a theme that runs through this material that
complexity must be chosen in a way that balances variance and bias
for the particular combination of N and p and general circumstance
one faces. That choice of predictor complexity of course depends upon reliable
means of assessing (the unknown theoretical test error) Err in display (7).
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The most obvious/elementary means of approximating Err is the so-called
"training error"

err =
1

N

N∑
i=1

L
(
f̂ (xi) , yi

)
(14)

The problem is that err is no good estimator of Err (or any other sensible quan-
tification of predictor performance). It typically decreases with increased com-
plexity (without an increase for large complexity), and fails to reliably indicate
performance outside the training sample. The situation is like that portrayed
in Figure 2.

Figure 2: Cartoon Portraying Err and err as Functions of Predictor Complexity

The fundamental point here is that one cannot both "fit" and "test" on the
same dataset and arrive at a reliable assessment of predictor effi cacy. Behaving
in such manner will almost always suggest use of a predictor that is too complex
and has a relatively large "test error" Err.
The existing practical options for evaluating likely performance of a predictor

(and guiding choice of appropriate complexity) then include the following.

1. One might employ some function of err that is a better indicator of likely
predictor performance, like Mallows’Cp, "AIC," and "BIC."

2. In genuinely largeN contexts, one might hold back some random sample of
the training data to serve as a "test set," fit to produce f̂ on the remainder,
and use

1

size of the test set

∑
i∈ the
test set

L
(
f̂ (xi) , yi

)
to indicate likely predictor performance.

3. One might employ sample re-use methods to estimate Err and guide choice
of complexity. Cross-validation and bootstrap ideas are used here.
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We’ll say more about these possibilities later, but here describe the most
important of them, so-called cross-validation. K-fold cross-validation consists
of

1. randomly breaking the training set into K disjoint roughly equal-sized
pieces ("folds"), say T 1,T 2, . . . ,TK ,

2. training on each of the reduced training sets T − T k (that we will call
corresponding "remainders") to produce K predictors f̂k,

3. letting k (i) be the index of the fold T k containing training case i, and
computing the cross-validation error

CV
(
f̂
)

=
1

N

N∑
i=1

L
(
f̂k(i) (xi) , yi

)
(15)

that one hopes approximates Err.

(This is roughly the same as fitting on each remainder T −T k and correspond-
ingly testing on fold T k, and then averaging. When N is a multiple of K, these
are exactly the same.) Assuming that one has randomized the order of the
cases in a training set, Figure 3 portrays the K folds and how cross-validation
proceeds.

Figure 3: Schematic for K-fold cross-validation.

The choice K = N is called "leave one out (LOO) cross-validation" and in

this case there are sometimes slick computational ways of evaluating CV
(
f̂
)
.

This has been true for ordinary least squares SEL prediction for some time and
recent work of Zou and Wang has provided results for classification problems as
well. As discussed more completely in Section 16.3, cross-validation actually
estimates Err for a training set of size approximately N

(
1−K−1

)
, so there is

potential bias7 that typically decreases with increasing K, making LOO cross-
validation attractive from this point of view.

7Note that for the use of cross-validation error to identify appropriate complexity, bias is
a problem only if it is not constant across choices of predictors and their complexities.
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Notice that unless K = N , even for fixed training set T , CV
(
f̂
)
is random,

owing to its dependence upon random assignment of training cases to folds. It

is thus highly attractive in cases where K < N is used, to replace CV
(
f̂
)
with

an average cross-validation error (say CV
(
f̂
)
) derived from a large number of

repeated splittings of T into K folds. The caret package in R (and, presum-
ably, similar packages in other systems) facilitates this repeated cross-validation

for a variety of prediction methods and effectively replaces CV
(
f̂
)
with its ex-

pected value across randomizations. The fact that this averaging (and related
computational burden) is not needed for LOO cross-validation is another reason
to find it attractive.
LOO cross-validation has been portrayed in the statistical folklore as suf-

fering from a large variance. The argument has been that because its f̂k are
all built on nearly the same training sets and produce similar predictions, the

averaging done in computing CV
(
f̂
)
might be relatively ineffective in reduc-

ing variance. This logic has been thought to motivate bias-variance trade-off
considerations for representation of Err, making K = 5 and K = 10 popular
choices in practice. But the recent work of Zou and Wang has strongly called
into question the truth of the folklore and makes a convincing case for LOO
cross-validation when it is feasible.

1.3.7 Choosing a Predictor Based on Cross-Validation

One popular rule of thumb for choosing between predictors of differing complex-
ities on the basis of a single K-fold cross-validation for each (with K < N) has
been this. For the complexity producing the smallest realized cross-validation
error, one computes a "standard error" for the prediction error. That is, for each

fold T k, one computes a kth "test error" (call it CVk
(
f̂
)

), for f̂k (referred to in

step 2.) obtained by fitting on remainder T − T k, evaluating on T k. Then for
SDK the sample standard deviation of CV1

(
f̂
)
, CV2

(
f̂
)
, . . . , CVK

(
f̂
)
, the

"standard error" of interest is SDK/
√
K. One then selects for use the least

complex predictor with its own corresponding cross-validation error no larger
than

CV
(
f̂
)

+ SDK/
√
K

This is sometimes called the "one standard error rule of thumb" and is presum-
ably motivated by recognition of the uncertainty involved in cross-validation
(deriving from the randomness of 1) the selection of the training set and 2) the
partitioning of it into folds) and the desire to avoid overfitting. But (in light

of the dependence of the CVk
(
f̂
)

)) the validity of the supposed standard error

is at best quite approximate, and then the appropriateness of a "one standard
error rule" is not at all obvious.
The most obvious, aggressive, and logically defensible way of using CV

(
f̂
)
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(or CV
(
f̂
)
) to choose a predictor is to simply use the f̂ minimizing the function

CV (·) (or CV (·)). We will call this way of operating a "pick-the-(cross-
validation error)-winner rule."
It is an important and somewhat subtle point that if

f̃ = arg min
f̂

CV
(
f̂
)

the minimum cross-validation error CV
(
f̃
)
(or CV

(
f̃
)
) is not a valid cross-

validation error for a pick-the-winner rule!8 The issue is that while CV
(
f̂
)
(or

CV
(
f̂
)
) can legitimately guide the choice of f̂ , its use is then actually part of a

larger program of "predictor development" than that represented by any single
argument of CV (·) (or CV (·)). That being the case, in order to assess the
likely performance of f̃ , via cross-validation, inside each remainder T − T k
one must

1. split into K folds,

2. fit on the K remainders,

3. predict on the folds and make a cross-validation error,

4. pick a winner for the function in 3., say f̃k, and

5. then predict on T k using f̃k.

It is the values f̃k(i) (xi) that are used in form (15) to predict the performance
of a predictor derived from optimizing a cross-validation error across a set of
predictors.
The basic principle at work here (and always) in making valid cross-validation

errors is that whatever one will ultimately do in the entire training set
to make a predictor must be redone (in its entirety!) in every re-
mainder and applied to the corresponding fold.

1.3.8 Penalized Training Error Fitting and Choosing Complexity

A way of creating (and ultimately using cross-validation to choose a good value
for) an explicit numerical complexity measure in supervised learning is through
the notion of penalization of training error. That is, suppose that in the frame-
work of Section 1.3.4 one can define for every element of the class of functions
S = {g} a complexity penalty J [g] ≥ 0 and for every λ ≥ 0 defines a measure
of undesirability for g reflecting both fit to the training data and complexity by

err+ λJ [g] =
1

N

N∑
i=1

L (g (xi) , yi) + λJ [g] (16)

8 Intuition suggests that it will typically be optimistic as representing Err for the pick-the-
winner predictor.
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Call the function optimizing this objective (over choices of g) for a given λ by
the name f̂λ. The smaller is λ, the more complex will be f̂λ.

As a simple example, consider p = 1 SEL prediction on < with standardized
input x. With S =

{
β1x+ β2x

2 + β3x
3|β1, β2, β3 are all real

}
, using J [g] =

β22 +β23 penalizes lack of linearity in a fitted cubic. Small λ produces essentially
least squares fitting of a cubic and large λ produces least squares fitting of a
line.
Applying this penalized fitting to each remainder T − T k to produce K

predictors f̂kλ , one can as in display (15) derive a cross-validation error corre-
sponding to λ as

CV (λ) =
1

N

N∑
i=1

L
(
f̂
k(i)
λ (xi) , yi

)
To produce a pick-the-winner rule in this context, one minimizes this (or an
average cross-validation error CV (λ) if K < N is employed) by choice of λ,
producing the optimizer, say, λopt (a function of the training set), and ultimately
employs λopt and the criterion (16) with the whole training set (T ) to produce
the pick-the-winner predictor f̃ = f̂λo p t for application.

1.4 Good Features and Prediction

There are sometimes more or less standard/obvious ways for taking a small
number (p) of "original" features and making (often many) additional ones.
Powers of original variables xj make sense where polynomial predictors for a
quantitative y are natural. Where a quantitative y can be expected to have
periodic character, sin and/or cos functions can be useful, etc.
Exactly how to think about such data preprocessing and feature-making

is not always completely obvious. It is the intention here to raise several
conceptual and practical issues that potentially arise in feature engineering in
a supervised learning problem.

1.4.1 Classification Models and Optimal Features

Consider first a K-class classification model, where y takes values in G ={0, 1,
. . . ,K−1}. P then has K conditional distributions for x|y, that we will assume
are specified by densities

p (x|0) , p (x|1) , . . . , p (x|K − 1)

(There is no loss of generality here. These could be densities with respect to the
simple arithmetic average of the K class-conditional distributions.) There is
important statistical theory concerning minimal suffi ciency that promises that
regardless of the original dimensionality of x (namely, p) there is a (K − 1)-
dimensional feature that carries all available information about y encoded in
x.
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For K = 2 the 1-dimensional likelihood ratio statistic

L (x) =
p (x|1)

p (x|0)
(17)

is "minimal suffi cient." If one knew the value of L (x) one would know all x
has to say about y. An optimal single feature is L (x) . In a practical problem,
the closer that one can come to engineering features "like" L (x), the more
effi ciently/parsimoniously one represents the input vector x. Of course, any
monotone transform of L (x) is equally as good as L (x).
ForK > 2, roughly speaking theK−1 ratios p (x|k) /p (x|0) (taken together)

form a minimal suffi cient statistic for the model. This potentially isn’t quite
true because of possible problems where p (x|0) = 0. But it is true that with
s (x) =

∑K−1
k=0 p (x|k) the vector(

p (x|1)

s (x)
,
p (x|2)

s (x)
, . . . ,

p (x|K − 1)

s (x)

)
(18)

(and many variants of it) is (are) minimal suffi cient. To the extent that one
can engineer features approximating these K−1 ratios9 , one can parsimoniously
represent the input vector.

1.4.2 Approximating "Partially Optimal" Numerical Features for
Discrete Parts of Input Vectors

When one or more coordinates xj of an input vector x are categorical, ordinal,
or numerical-but-discrete it can be useful to try to represent the information
they together provide about y in terms of a (low-dimensional) feature taking
values in <q for a relatively small q. Numerical features are simply more
directly handled by standard prediction methodologies than categorical, ordinal,
or even discrete numerical ones. Here we consider low-dimensional "partially
optimal" numerical features based on vectors of categorical, ordinal, and/or
discrete numerical inputs and empirical approximations to them.
Suppose that a sub-vector of x, say x̌ = (xj1 , xj2 , . . . , xjD ), has entries with

respectively only finite numbers M1,M2, . . . ,MD of possible values, so that the
sub-vector has M = M1 ·M2 · · · · ·MD possible values. One standard way of
representing such an x̌ is through the use of M − 1 dummy (0-1) variables, one
for every possible value of x̌ except an arbitrarily chosen "last" one. That deals
with the possibility that parts of x̌ are ordinal or categorical with more than 2
possible values in terms of making arithmetic operations applied to their repre-
sentations sensible. But it also explodes the number of features representing x̌
from D to M , motivating contemplation of another approach.
Consider then the case of classification models where y takes values in a finite

set G = {0, 1, . . . ,K − 1}. There are M · K possible values of (x̌, y). Then
(based on all or a fixed subset of the full training set) with Nx̌,y the number of

9These are the K−1 conditional probabilities P [y = 1|x] , . . . , P [y = K − 1|x] for the case
where each P [y = k] = 1/K.
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training cases with x̌i = x̌ and yi = y (), let N.,y =
∑
x̌Nx̌,y be the number of

training cases with x̌i = x̌ and Nx̌,. =
∑
y Nx̌,y be the number of training cases

withyi = y. The vector function of x̌

P̂ (y|x̌) =
1

Nx̌,.
(Nx̌,1, Nx̌,2, . . . , Nx̌,K−1) (19)

serves as an approximation to the numerical (K − 1)-dimensional feature with

entries P [y = k|x̌]. And with ŝ (x̌) =
K−1∑
k=0

(Nx̌,k/N.,k), the vector function of

x̌

L̂ (x̌) =
1

s (x̌)

(
Nx̌,1
N.,1

,
Nx̌,2
N.,2

, . . . ,
Nx̌,K−1
N.,K−1

)
(20)

serves as an approximation to the numerical (K − 1)-dimensional feature with

entries p (x̌|k) /
K−1∑
k=0

p (x̌|k).

We noted in the previous section that the vector function with entries

p (x|k) /
K−1∑
k=0

p (x|k) is minimal suffi cient in the classification model. And the

vector with entries P [y = k|x] is an optimal predictor under cross-entropy loss
and a function of it is an optimal 0-1 loss classifier. The versions of these in dis-
plays (19) and (20) based on x̌ (rather than the full input vector x) thus might
then be considered "partially optimal," representing the best one could do sup-
plied only with the discrete part, x̌, of x. And then P̂ (y|x̌) and/or L̂ (x̌) are
are approximate partially optimal numerical features of low dimension. How
useful they will be in practice will depend in part upon how large are the values
Nx̌,y, which in turn depends upon how large the (whole or partial) training set
is in comparison to M . As values of D and M employed increase, one should
expect the effectiveness of the "partially optimal" features to increase and the
fidelity of the approximations to them to decrease. Some trade-off between
these effects will be necessary and a sensible way to try and employ this idea in
practice is to build sets of these features with a spectrum of values M and look
for one that is overall most effective.
Now drop the assumption that y has only K values and consider what in this

direction can be done in SEL prediction problems. We have noted repeatedly
that here the theoretically optimal predictor of y is f (x) =E[y|x], in some sense
an "unrealizable optimal feature" for prediction. By the same token, if one had
access to only x̌, an optimal feature for prediction would be E[y|x̌]. That
suggests thinking of this conditional mean function as a "partially optimal"
1-dimensional feature for encoding the information in x̌ in the full prediction
problem.
Simple approximation to the function E[y|x̌] based on (all or part of) a train-

ing set is straightforward and can be an effective way to make a 1-dimensional
numerical feature to represent the D-dimensional x̌. With Nx̌ the number of
training cases with x̌i = x̌ (based on all or a subset of the full training set), the
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corresponding empirical mean output

ȳ (x̌) =
1

Nx̌

∑
i with x̌i=x̌

yi

across the M possible values of x̌ defines an approximate partially optimal
feature for SEL prediction. How useful this will be in practice will depend
in part upon how large the values Nx̌ are, which in turn depends upon how
large the (whole or partial) training set is in comparison to M . As values of
D and M employed increase, one should expect the effectiveness of the feature
E[y|x̌] to increase and the fidelity of ȳ (x̌) as an approximation to it to decrease.
Again, some trade-off between these effects seems necessary, and building and
comparing the performance of sets of these features with a spectrum of values
M seems sensible.
We have here repeatedly used phrases like "all or part of a training set."

It is not clear when it will be best to use an entire training set to make these
empirical approximations P̂ (y|x̌) , L̂ (x̌) , or ȳ (x̌), and when it will be best to
reserve only a part of the training set to to make them and then use the balance
for predictor-building based on these approximately partially optimal features
(and other features as appropriate). ISU use of a variant of the approximations
L̂ (x̌) built on a part of a training set reserved exclusively for feature engineering
led to an international first place in the 2014 Prudsys AG Data mining Cup.
The team’s intuition was that both using a training case in making the function
L̂ (x̌) and then subsequently using the case for fitting classifier was likely to
cause overfit and poor performance on test cases.
Ultimately, questions of what fraction (if any) of a training set to reserve for

feature-making, which discrete sub-vector or sub-vectors to use in the develop-
ment of approximate partially optimal features, and all questions of subsequent
predictor fitting should in practice be answered via cross-validation (that does
every detail of making predictions onK remainders and tests on the correspond-
ing K folds). Cross-validation of all—including potential data splitting, choice
of M , and feature making– is needed to empirically gauge likely performance
on new cases. See remarks at the end of Section 1.4.5 for a bit more on this
issue.

1.4.3 Abstract Feature Spaces (of Functions) and "Kernels"

There are surely situations where what P encodes about a relationship between
x and y is very complicated and "non-linear" (whatever that might mean in
this context). Standard (and really, almost all tractable) mathematics of pre-
diction often relies on "linear" operations: additions of vectors, multiplication
of vectors by scalars, inner products (and associated norms and distances), etc.
"Ordinary" creation of features can be thought of as a way to map a feature
space <p (non-linearly) to a higher-dimensional (Euclidean and therefore linear)
feature space <q. But sometimes that is ineffective because q large enough to
in theory allow for good prediction based on linear operations is so large as to
make an appropriate transform from <p to <q impossible to identify and/or use.
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A very clever and practically powerful development in machine learning has
been the realization that for some purposes, it is not necessary to map from <p
to a Euclidean space, but that mapping to a linear space of functions may be
helpful. That is, creation of new numerical features based on input vector x
can be thought of as transformation

T : <p → <q

where relationships in <q or predictors mapping from <q and producing a ŷ
are then thought of as defining ones for xs in <p by simply applying T to xs
of interest. This line of reasoning doesn’t depend at all upon T mapping to a
Euclidean space. If A is an abstract feature space of functions (that is an inner
product space10) one might think of mapping

T : <p → A

and using linear operations and relationships in A to make relationships and
predictors based on as in A, and then defining corresponding ones for xs in <p
by simply applying T to xs of interest. After all, in some sense functions are
really just high-dimensional vectors, and if transforming <p → <q with p < q is
often useful, so also might be transforming <p → A.

This line of argument has especially been taken advantage of through the use
of so-called "kernel functions." (Be careful. There are many different usages of
the word "kernel" in the machine learning world.) Suppose that a symmetric
function K (x, z) with domain some part of <p ×<p is non-negative definite in
the sense that for any training set T the (symmetric) N ×N so-called "Gram
matrix"

K = (K (xi,xj))i=1,...,N
j=1,...,N

(21)

is non-negative definite. Then the space of functions that are linear combina-
tions of "slices" of K (x, z), i.e. functions of x of the form

M∑
j=1

cjK (x, zj)

for M > 0 real numbers c1, c2, . . . , cM , and elements z1, z2, . . . ,zM of <p form
a linear space (call it A). It is possible to coherently define a very convenient
inner product on that space starting from the basic relationship

〈K (·, z1) ,K (·, z2)〉A ≡ K (z1, z2) (22)

and using the bilinearity of any inner product to see that then of necessity〈
M∑
j=1

c1jK (·, zj) ,
M∑
j=1

c2jK (·, zj)
〉
A

=

M1∑
j=1

M2∑
j′=1

c1jc2j′K (zj , zj′) = c′1Kc2

10See Section 2.1 for more concerning the meaning of this language.
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for c′1 = (c11, . . . , c1M ), c′2 = (c21, . . . , c2M ), and M ×M matrix K with entries
K (zi, zj). This has the important special case that for c = c1 = c2∥∥∥∥∥∥

M∑
j=1

cjK (·, zj)

∥∥∥∥∥∥
2

A

=

〈
M∑
j=1

cjK (·, zj) ,
M∑
j=1

cjK (·, zj)
〉
A

= c′Kc

Of course, since K defines the inner product in A it also defines the distance
between

∑M
j=1 c1jK (·, zj) and

∑M
j=1 c2jK (·, zj)

dA

 M∑
j=1

c1jK (·, zj) ,
M∑
j=1

c2jK (·, zj)

 =

√
(c1 − c2)′K (c1 − c2)

(with c1, c2, and K as before).
Relationship (22) is the origin of the language that K serves as a repro-

ducing kernel. It both defines the linear space of functions of interest and
provides the inner product for the space. Under some conditions, the space
A (whose elements are functions <p → <) can be extended to include limits
of finite linear combinations of slices of the kernel function K (·, ·) and the re-
sulting construct is termed a Reproducing Kernel (Hilbert) Space (RKHS) of
functions.
In any event, having identified an inner product space associated with a

kernel, the abstract transform T : <p → A is defined by

T (x) (·) = K (x, ·)

(remember here that T (x) (·) is a function of "·"). The inner product in A of
two images of elements of <p is

〈T (x) , T (z)〉A = K (x, z)

and for a training set with inputs x1,x2, . . . ,xN the span of {T (xi)}i=1,...,N is
a linear subspace of A.
Probably the most used kernel function in machine learning is the "Gaussian

kernel"
K (x, z) = exp

(
−γ ‖x− z‖2

)
that produces abstract features

T (x) (·) = exp
(
−γ ‖x− ·‖2

)
that are radially symmetric p-variate Normal density functions located at x.
The function space consists of linear combinations of such functions (and limits

of them) and the abstract inner product of T (x) and T (z) is exp
(
−γ ‖x− z‖2

)
.

One can even give up requiring that the domain of a kernel function K (x, z)
is a subset of <p×<p, replacing it with arbitrary X × X and requiring only that
the Gram matrix be non-negative definite for any set of {xi}ni=1, xi ∈ X . It is
in this context that the "string kernels" of "text processing" briefly discussed
in Section 1.4.4 can be called "kernels."
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Kernel Mechanics A direct way of producing a kernel function is through a
Euclidean inner product of vectors of "features." That is, if φ : X → <m (so
that component j of φ, φj , creates the univariate real feature φj (x)) then for
〈·, ·〉 the usual Euclidean inner product (dot product),

K (x, z) = 〈φ (x) ,φ (z)〉 (23)

is a kernel function. (This basic idea will be used in Section 2.4.2.)
Section 6.2 of the book Pattern Recognition and Machine Learning by Bishop

notes that it is very easy to make new kernel functions from known ones. In
particular, for c > 0,K1 (·, ·) and K2 (·, ·) kernel functions on X × X , h (·) : X →
< arbitrary, q (·) a polynomial with non-negative coeffi cients, φ : X → <m,
K3 (·, ·) a kernel on <m ×<m, andM a non-negative definite matrix, all of the
following are kernel functions:

1. K (x, z) = cK1 (x, z) on X × X ,

2. K (x, z) = h (x)K1 (x, z)h (z) on X × X ,

3. K (x, z) = q (K1 (x, z)) on X × X ,

4. K (x, z) = exp (K1 (x, z)) on X × X ,

5. K (x, z) = K1 (x, z) +K2 (x, z) on X × X ,

6. K (x, z) = K1 (x, z)K2 (x, z) on X × X ,

7. K (x, z) = K3 (φ (x) ,φ (z)) on X × X , and

8. K (x, z) = x′Mz on <m ×<m.

(Fact 7 generalizes the basic insight of display (23).) Further, if X ⊂ XA×XB
and KA (·, ·) is a kernel on XA ×XA and KB (·, ·) is a kernel on XB ×XB , then
the following are both kernel functions:

9. K ((xA,xB) , (zA, zB)) = KA (xA, zA) +KB (xB , zB) on X × X , and

10. K ((xA,xB) , (zA, zB)) = KA (xA, zA)KB (xB , zB) on X × X .

An example of a kernel on a somewhat abstract (but finite) space is this.
For a finite set B consider X = 2B, the set of all subsets of B. A kernel on
X × X can then be defined by

K (B1, B2) = 2|B1∩B2| for B1 ⊂ B and B2 ⊂ B

There are several probabilistic and statistical arguments that can lead to
forms for kernel functions. For example, a useful fact from probability theory
(Bochner’s Theorem) says that characteristic functions for p-dimensional dis-
tributions are non-negative definite complex-valued functions of s ∈ <p. So if
ψ (s) is a real-valued characteristic function, then

K (x, z) = ψ (x− z)
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is a kernel function on <p × <p. Related to this line of thinking are lists
of standard characteristic functions (that in turn produce kernel functions) and
theorems about conditions suffi cient to guarantee that a real-valued function is a
characteristic function. For example, each of the following is a real characteristic
function for a univariate random variable (that can lead to a kernel on <1×<1):

1. ψ (t) = cos at for some a > 0,

2. ψ (t) =
sin at

at
for some a > 0,

3. ψ (t) = exp
(
−at2

)
for some a > 0, and

4. ψ (t) = exp (−a |t|) for some a > 0.

And one theorem about suffi cient conditions for a real-valued function on <1
to be a characteristic function says that if ψ is symmetric (ψ (−t) = ψ (t)),
ψ (0) = 1, and ψ is decreasing and convex on [0,∞), then ψ is the characteristic
function of some distribution on <1. (See Chung’s A Course in Probability
Theory, page 191.)
Bishop points out two constructions motivated by statistical modeling that

yield kernels that have been used in the machine learning literature. One is
this. For a parametric model on (a potentially completely abstract) X , consider
densities p (x|θ) that when treated as functions of θ are likelihood functions (for
various possible observed x). Then for a distribution G for θ ∈ Θ,

K (x, z) =

∫
p (x|θ) p (z|θ) dG (θ)

is a kernel. This is the inner product in the space of square integrable functions
on the probability space Θ with measure G of the two likelihood functions. In
this space, the distance between the functions (of θ) p (x|θ) and p (z|θ) is√∫

(p (x|θ)− p (z|θ))
2
dG (θ)

and what is going on here is the implicit use of (infinite-dimensional) features
that are likelihood functions for the "observations" x. Once one starts down
this path, other possibilities come to mind. One is to replace likelihoods with
loglikelihoods and consider the issue of "centering" and even "standardization."
That is, one might define a feature (a function of θ) corresponding to x as

φx (θ) = ln p (x|θ) or φ′x (θ) = ln p (x|θ)−
∫

ln p (x|θ) dG (θ)

or even φ′′x (θ) =
ln p (x|θ)−

∫
ln p (x|θ) dG (θ)√∫ (

ln p (x|θ)−
∫

ln p (x|θ) dG (θ)
)2
dG (θ)
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Then obviously, the corresponding kernel function is

K (x, z) =

∫
φx (θ)φz (θ) dG (θ) or K′ (x, z) =

∫
φ′x (θ)φ′z (θ) dG (θ)

or K′′ (x, z) =

∫
φ′′x (θ)φ′′z (θ) dG (θ)

(Of these three possibilities, centering alone is probably the most natural from
a statistical point of view. It is the "shape" of a loglikelihood that is important
in statistical context, not its absolute level. Two loglikelihoods that differ by a
constant are equivalent for most statistical purposes. Centering perfectly lines
up two loglikelihoods that differ by a constant.)
In a regular statistical model for x taking values in X with Euclidean para-

meter vector θ = (θ1, θ2, . . . , θk), the k×k Fisher information matrix, say I (θ),
is non-negative definite. Then with score function

∇θ ln p (x|θ) =



∂

∂θ1
ln p (x|θ)

∂

∂θ2
ln p (x|θ)

...
∂

∂θk
ln p (x|θ)


(for any fixed θ) the function

Kθ (x, z) = ∇θ ln p (x|θ)
′
(I (θ))

−1∇θ ln p (z|θ)

has been called the "Fisher kernel" in the machine learning literature. (It
follows from Bishops’s 7. and 8. that this is indeed a kernel function.) Note that
Kθ (x,x) is essentially the score test statistic for a point null hypothesis about θ.
The implicit feature vector here is the k-dimensional score function (evaluated
at some fixed θ, a basis for testing about θ), and rather than Euclidean norm,

the norm ‖u‖θ ≡
√
u′(I (θ))

−1
u is implicitly in force for judging the size of

differences in feature vectors.

1.4.4 Document Features and String Kernels for Text Processing

An important application of various kinds of both supervised and unsupervised
learning methods is that of text processing. The object is to quantify structure
and commonalities in text documents. Patterns in characters and character
strings and words are used to characterize documents, group them into clusters,
and classify them into types. We here say a bit about some simple methods
that have been applied.
Suppose that N documents in a collection (or corpus) are under study. One

needs to define "features" for these, or at least some kind of "kernel" functions
for computing the inner products required for producing principal components
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in an implicit feature space (and subsequently clustering or deriving classifiers,
and so on).
If one treats documents as simply sets of words (ignoring spaces and punctu-

ation and any kind of order of words) one simple set of features for documents
d1,d2, . . . ,dN is a set of counts of word frequencies. That is, for a set of p
words appearing in at least one document, one might take

xij = the number of occurrences of word j in document i

and operate on a representation of the documents in terms of an N × p data
matrix X. These raw counts xij are often transformed before processing.
One popular idea is the use of a "tf-idf" (term frequency-inverse document
frequency) weighting of elements of X. This replaces xij with

tij = xij ln
N∑N

i=1 I [xij > 0]

or variants thereof. (This up-weights non-zero counts of words that occur
in few documents. The logarithm is there to prevent this up-weighting from
overwhelming all other aspects of the counts.) One might also decide that
document length is a feature that is not really of primary interest and determine
to normalize vectors xi (or ti) in one way or another. That is, one might begin
with values

xij∑p
j=1 xij

or
xij
‖xi‖

rather than values xij . This latter consideration is, of course, not relevant if
the documents in the corpus all have roughly the same length.
Processing methods that are based only on variants of the word counts xij

are usually said to be based on the "Bag-of-Words." They obviously ignore
potentially important word order. (The instructions "turn right then left" and
"turn left then right" are obviously quite different instructions.) One could
then consider ordered pairs or n-tuples of words.
So, with some "alphabet" A (that might consist of English words, Roman

letters, amino acids in protein sequencing, base pairs in DNA sequencing, etc.)
consider strings of elements of elements of the alphabet, say

s = b1b2 · · · b|s| where each bi ∈ A

A document (... or protein sequence ... or DNA sequence) might be idealized
as such a string of elements of A. An n-gram in this context is simply a string
of n elements of A, say

u = b1b2 · · · bn where each bi ∈ A

Frequencies of unigrams (1-grams) in documents are (depending upon the al-
phabet) "bag-of-words" statistics for words or letters or amino acids, etc. Use of
features of documents that are counts of occurrences of all possible n-grams ap-
pears to often be problematic, because unless |A| and n are fairly small, p = |A|n
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will be huge and then X huge and sparse (for ordinary N and |s|). And in
many contexts, sequence/order structure is not so "local" as to be effectively
expressed by only frequencies of n-grams for small n.

One idea that seems to be currently popular is to define a set of interesting
strings, say U = {ui}pi=1 and look for their occurrence anywhere in a document,
with the understanding that they may be realized as substrings of longer strings.
That is, when looking for string u (of length n) in a document s, we count every
different substring of s (say s′ = si1si2 · · · sin) for which

s′ = u

But we discount those substrings of s matching u according to length as fol-
lows. For some λ > 0 (the choice λ = .5 seems pretty common) give matching
substring s′ = si1si2 · · · sin weight

λin−i1+1 = λ|s
′|

so that document i (represented by string si) gets value of feature j

xij =
∑

sil1sil2 ···siln=uj

λln−l1+1 (24)

It further seems that it’s common to normalize the rows of X by the usual
Euclidean norm, producing in place of xij the value

xij
‖xi‖

(25)

This notion of using features (24) or normalized features (25) looks attrac-
tive, but potentially computationally prohibitive, particularly since the "inter-
esting set" of strings U is often taken to be An. One doesn’t want to have to
compute all features (24) directly and then operate with the very large matrix
X. But just as we were reminded in Section 2.4.2, it is only XX ′ that is re-
quired to find principal components of the features (or to define SVM classifiers
or any other classifiers or clustering algorithms based on principal components).
So if there is a way to effi ciently compute or approximate inner products for
rows of X defined by form (24), namely

〈xi,xi′〉 =
∑
u∈An

 ∑
sil1sil2 ···siln=u

λln−l1+1

 ∑
si′m1

si′m2
···si′mn=u

λmn−m1+1


=
∑
u∈An

∑
sil1sil2 ···siln=u

∑
si′m1

si′m2
···si′mn=u

λln−l1+mn−m1+2

it might be possible to employ this idea. And if the inner products 〈xi,xi′〉
can be computed effi ciently, then so can the inner products〈

1

‖xi‖
xi,

1

‖xi′‖
xi′

〉
=

〈xi,xi′〉√
〈xi,xi〉 〈xi′ ,xi′〉
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needed to employ XX ′ for the normalized features (25). For what it is worth,
it is in vogue to call the function of documents s and t defined by

K (s, t) =
∑
u∈An

∑
sl1sl2 ···sln=u

∑
tm1

tm2
···tmn=u

λln−l1+mn−m1+2

the S
¯
tring S

¯
ubsequence K

¯
ernel and then call the matrix XX ′ = (〈xi,xj〉) =

(K (si, sj)) the Gram matrix for that "kernel." The good news is that there are
fairly simple recursive methods for computing K (s, t) exactly in O (n |s| |t|) time
and that there are approximations that are even faster (see the 2002 Journal
of Machine Learning Research paper of Lodhi et al.). That makes the implicit
use of features (24) or normalized features (25) possible in many text processing
problems.

1.4.5 "Feature Engineering" and Data "Pre-processing": More Per-
spective and Prediction of Predictor Effi cacy

Feature engineering amounts to replacing every observation vector x with a fixed
function/transform thereof, T (x). It should then be completely obvious that
feature engineering cannot produce training data that are intrinsically "more
informative" than the original ones. In fact, if the function T (·) is not one-to-
one, a transformed dataset is potentially less informative than the original in the
absolute sense of its potential usefulness.11 What then is the point of feature
engineering? It is to put data into a form compatible with simple existing
methods of processing inputs into outputs or to provide additional predictors
beyond what standard methods produce when applied directly. It is a common
form of sloppy thought or expression to say that feature engineering makes data
more informative. Rather, it can make then more compatible with standard
prediction methodologies than the original training set12 or extend the flexibility
of those standard prediction methodologies.
As a toy example, consider a 2-class classification problem with x ∈ <2

where every training case with
∥∥xi − (2, 2)

′∥∥ < 1 has yi = 0 and every training
case with

∥∥xi − (2, 2)
′∥∥ ≥ 1 has yi = 1. Then a classifier with with (0-1 loss)

err = 0 is
f̂ (x) = I

[
(xi1 − 2)

2
+ (xi2 − 2)

2 ≥ 1
]

which is, for example, not expressible in terms of two regions in <2 with linear
boundaries. However, if one defines the nonlinear transform T : <2 → <5 by

T (x) =
(
x1, x2, x

2
1, x

2
2, x1x2

)′
11The theory of statistical suffi ciency is concerned with what non-one-to-one transforms do

not cause loss of information.
12For example, reducing a signal to a set of Fourier coeffi cients does not increase information

about the signal. But it does replace the signal with a set of variables that are potentially more
convenient than the original signal itself in terms of exisiting signal processing methodology.
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then a very small amount of algebra shows that the classifier can be written in
terms of a linear combination of coordinates of T (x) as

(−4,−4, 1, 1, 0)T (x) ≥ −7

That is, thought of as defined in terms of T (x) ∈ <5 (in terms of the input
transformed to the higher-dimension space <5) the classifier is defined by a very
simple linear (inner product) operation.
The toy example is instructive because it has characteristics of a strategy

that is commonly effective in practice. That is one where a nonlinear transform
is employed to map training cases into a linear space in which simple operations
are used to define a predictor. (It should be noted that in the event that x takes
values in a linear space like <2, a linear transform has no potential to provide
the kind of advantage seen in the hypothetical example. That is because a linear
transform can only map the training set to a linear subspace of dimension no
more than that spanned by the original training set.)
Notice that the thinking here substantially blurs any perceived line between

"feature engineering" and "predictor fitting." They are both really parts of a
single process and one cannot be treated as inconsequential to the production of
the test error, Err (nor ignored it attempts to represent it empirically through
cross-validation).
It is also important to think clearly about what goes into the making of

transformed feature T (x). The intent of the notation T (x) is that the form
of the function T (·) does not depend upon the training set. But sometimes
data "pre-processing" effectively violates this understanding, making the form
of the function training-set-dependent. One might use notation like T (T , ·) to
represent this and this issue must be carefully handled in cross-validation.
That is, if one is contemplating use of a predictor built upon a training

set (T (T ,x1) , y1) , (T (T ,x2) , y2) , . . . , (T (T ,xN ) , yN ) and hopes to useK-fold
cross-validation to reliably predict predictor performance, fitting on remainder
k must be done using not values (T (T ,xi) , yi) for cases in remainder k, but
rather values (T (T − T k,xi) , yi). For example, as mentioned in Section 1.3.6,
when building predictors based on standardized inputs, standardization must be
done afresh for each new remainder! If the training set will be used to choose a
parameter of a kernel for use in defining abstract features associated with input
vectors, the same kind of choice must be made one remainder at a time, etc.
Failure to do so breaks the cross-validation paradigm and the basic maxim that
whatever is ultimately going to be done to make predictions must
be done in each individual remainder, i.e. must be done K times.
Typically, failure to follow this maxim will produce unduly optimistic (and
substantially wrong) supposed "cross-validation errors."
This matter seems particularly important to recognize in cases (like those

where a training set will be used to make approximate likelihood ratios per
Section 1.4.2) where the responses in the training set or remainder (not the
inputs only) are involved in the making of new features. The issue also raises
the question of exactly how best to use a training set (or remainder) to both 1)
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choose T as a function of the training set (or remainder) and then 2) build a
predictor. Two possibilities are to 1) use the entire training set (or remainder) in
both steps, or to 2) randomly split the training set (or remainder) into two parts,
the first for use in choosing the form of T and the other for use in subsequently
building the prediction algorithm. Which of these (or some other version of
them) is likely to be most effective is not clear. What is clear is that care
must be taken to "separately do in each remainder in a cross-validation all that
will be ultimately done with the full training set" if one is to produce reliable
cross-validation errors.

1.5 Some More Generalities for 2-Class Classification

In Section 1.3.2 we identified a theoretically optimal (0-1 loss) K-class classifier
as

f (x) = arg max
k

P [y = k|x]

By far, the most important version of this is the K = 2 case. And for this case,
there are some very important additional general insights that we proceed to
discuss.

1.5.1 More on the Form of an Optimal 0-1 Loss Classifier for K = 2

For K = 2, for various purposes different ones of the (arbitrary and completely
equivalent) codings for the possible values of y

{0, 1} , {1, 2} , and {−1, 1}

prove useful. For the time being, employ the first and abbreviate P [y = 1]
as π (so that P [y = 0] = 1 − π), and write p (x|1) and p (x|0) for the two
class-conditional densities for x. Then

P [y = 1|x] =
πp (x|1)

πp (x|1) + (1− π) p (x|0)
and (26)

P [y = 0|x] =
(1− π) p (x|0)

πp (x|1) + (1− π) p (x|0)

An optimal classifier is then

f (x) = I [P [y = 1|x] > .5] (27)

= I [P [y = 1|x] > P [y = 0|x]]

= I

[
p (x|1)

p (x|0)
>

(1− π)

π

]
= I

[
L (x) >

(1− π)

π

]
(28)

and one decides in favor of y = 1 when P [y = 1|x] is large, or equivalently the
likelihood ratio L (x) defined in (17) is large. Notice that this latter insight
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makes connection to classical statistical theory and identifies the optimal clas-
sifier as a Neyman-Pearson test of the simple hypotheses H0 : y = 0 versus
Ha : y = 1 with "cut-point" the ratio (1− π) /π.
As a slight generalization of this development, note that for l0 ≥ 0 and l1 ≥ 0

and an asymmetric loss
L (ŷ, y) = lyI [ŷ 6= y]

an optimal classifier is

f (x) = I

[
L (x) >

(1− π) l0
πl1

]
In fact, for a completely general choice of four losses L (ŷ, y) in a 2-class clas-
sification model, it is easy enough to argue that for ∆ ≡ L (1, 0) − L (0, 0) −
L (1, 1) +L (0, 1), ∆∗ ≡ L (1, 0)−L (0, 0), and R ≡ ∆∗/ |∆| an optimal classifier
is

f (x) = I [P [y = 1|x] > R]

which for R ∈ (0, 1) is

f (x) = I

[
L (x) >

(1− π)R

π (1−R)

]
Shifting P [y = 1]: Effects on P [y = 1|x] and the Form of an Optimal
0-1 Loss Classifier An important issue in classification models is the effect
of changes in π on both P [y = 1|x] and (optimal classifier) f (x). There are
situations, for example, in which π is very extreme (one class is rare)13 and it
is then common practice to build a predictor using a training set made with
relative frequency of y = 1 that is π∗, a value that is much more moderate
(nearer to .5) than π. The obvious question is how to translate results for the
synthetic value π∗ to results for the real value π.
Relationship (26) implies that

P [y = 1|x] =
L (x)

L (x) +
(1− π)

π

and that

L (x) =
(1− π)

π

(
P [y = 1|x]

1− P [y = 1|x]

)
So, for the time being subscripting P with either π or π∗ depending upon which
marginal probability of y = 1 is operating (in models with the same class-
conditional densities p (x|1) and p (x|0)),

Pπ [y = 1|x] =

(1− π∗)
π∗

(
Pπ∗ [y = 1|x]

1− Pπ∗ [y = 1|x]

)
(1− π∗)
π∗

(
Pπ∗ [y = 1|x]

1− Pπ∗ [y = 1|x]

)
+

(1− π)

π

(29)

13The terminology of "extreme class imbalance" is commonly used.
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from which it is obvious how to translate an estimate of Pπ∗ [y = 1|x] made from
a synthetically balanced training set to one for the real situation described by
π. Further, an optimal classifier (27) or (28) is

I

[(
Pπ∗ [y = 1|x]

1− Pπ∗ [y = 1|x]

)
>
π∗ (1− π)

(1− π∗)π

]
and it is obvious how to translate an estimate of Pπ∗ [y = 1|x] made from a
synthetically balanced training set to an approximately optimal classification
for the real situation described by π.
For example, considering the k-nearest neighbor set-up of Section 1.3.3 using

a training set made with relative frequency of y = 1 that is π∗ when the real
probability that y = 1 is π, the right use of a neighborhood of x containing
n1 (x) cases xi with y = 1 and n0 (x) = k − n1 (x) with y = 0, is to classify
according to

I [n1 (x) (1− π∗)π > n0 (x)π∗ (1− π)]

which is the appropriate modification of the simple k-nearest neighbor rule made
to account for the difference between π∗ and π.

1.5.2 Other Prediction Problems in 2-Class Classification Models

There are other (besides 0-1 loss) standard prediction problems sometimes con-
sidered in the 2-class classification model. (These often show up as alternatives
to use of classification error rate as test criteria in prediction contests.)
One such problem concerns class probability prediction. In a context where

y is in {0, 1} but ŷ is allowed to be any real number in [0, 1], the so-called "log
loss" (that is the 2-class version of the cross-entropy loss of Section 1.3.2 as well
as the negative Bernoulli log-likelihood)

L (ŷ, y) = −y ln ŷ − (1− y) ln (1− ŷ)

is sometimes employed. For this loss, a theoretically optimal predictor is

f (x) = E [y|x] = P [y = 1|x]

For reasons that will shortly become clear (in Section 1.5.3), it is sometimes
convenient to use not 0-1 coding but rather −1-1 coding in 2-class classification
models, so that y is in {−1, 1}. Suppose that ŷ is allowed to be any real number,
then three other (initially odd-looking) losses are sometimes considered, namely

L1 (ŷ, y) = ln (1 + exp (−yŷ)) / ln (2) ,

L2 (ŷ, y) = exp (−yŷ) , and

L3 (ŷ, y) = (1− yŷ)+
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For these losses, theoretically optimal predictors are respectively

f1 (x) = ln

(
P [y = 1|x]

P [y = −1|x]

)
= lnL (x) ,

f2 (x) =
1

2
ln

(
P [y = 1|x]

P [y = −1|x]

)
=

1

2
lnL (x) , and

f3 (x) = sign (P [y = 1|x]− P [y = −1|x])

The "AUC" Criterion Another problem related to 2-class classification uses
(1 minus) an "Area Under the Curve" (AUC) as a loss. One chooses a function
O (x) taking values in [−∞,∞] to order values of x (large O (x) indicating large
likelihood that y = 1). For independent x with the (P ) distribution of x|y = 0
and x∗ with the (P ) distribution of x|y = 1 the theoretical "AUC" for O (to
be maximized) is

P [O (x) < O (x∗)] (30)

Arguments below (based on "receiver operating characteristic curves" and Neyman-
Pearson theory) establish that an optimal O (x) is the likelihood ratio L (x) de-
fined in (17) or any monotone increasing transform, of it including P [y = 1|x]).

AUC Technical Details Conceptually, an empirical "ROC" curve for a
test set is this. ForM test cases withM0 actual yi = 0 cases andM1 = M−M0

actual yi = 1 cases, one plots M0 points(
j

M0
, p̂1j

)
for j = 1, 2, . . . ,M0 − 1,M0 (31)

where if the test cases are arranged left to right as judged least-to-most likely
to have yi = 1,

p̂1j = the fraction of yi = 1 cases to the right of the jth left-most yi = 0 case

If one then makes a step function from the plotted points (constant at the
vertical of a plotted point over the interval of length 1/M0 to its left) and then
computes the area under that "curve" one obtains an "AUC" (a figure of merit
often used in predictive analytics contests). If the ordering of cases comes from
O, this area is

AUC =
1

M0

M0∑
j=1

p̂1j =
1

M0

∑
i s.t. yi=0

 1

M1

∑
j s.t. yj=1

I [O (xi) < O (xj)]

 (32)

Let G0 and G1 be respectively the y = 0 and y = 1 class conditional cdfs of
O (x). Then corresponding to the empirical AUC is the theoretical ("integrated
power") value

IP =

∫
(1−G1 (t))dG0 (t) (33)
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IP is exactly the criterion (30) and in the event that G0 (t) is continuous and
increasing (and thus has an inverse) this is

IP =

∫ 1

0

(
1−G1

(
G−10 (u)

))
du

Notice too that if for each t one builds from O a classifier of the form

at (x) = I [O (x) > t]

the integrand in display (33) is the power of the test/classifier as a function of
t and IP is an average (according to the y = 0 class conditional distribution of
O (x)), an "integrated power."
Let α (t) be the Type I error rate of the test at (x), i.e.

α (t) = E0at (x) = P [O (x) > t|y = 0]

and β (t) be the Type II error rate of at (x),

β (t) = 1− E1at (x) = P [O (x) 6 t|y = 1]

Another representation of IP is then this. As t runs from ∞ to −∞ the points

(α (t) , 1− β (t)) (34)

trace out a (theoretical Receiver Operating Characteristic) curve in [0, 1]
2 (the

theoretical version of the step function defined by points in display (31) made
from ordered test cases in order to compute the empirical AUC). The ordinary
integral over [0, 1] of the function defined by that parametric curve is IP , and
therefore the "higher" that parametric curve, the larger is the (theoretical) IP .
But consider the convex body in [0, 1]

2 defined by all pairs (α, 1− β) cor-
responding to possible classifiers/tests (we may need to allow randomization
here). (This is a reflection of the set of all points (α, β) comprising the 0-1
loss risk set of all possible classifiers/tests.) The upper boundary of that con-
vex body (that corresponds to the lower boundary of the risk set) comes from
Bayes classifiers/tests. It is guaranteed to lie "above" (at least as high) as the
parametric curve defined in display (34). But the form of optimal (Bayes and
Neyman-Pearson) tests/classifiers is well-known. We have already said that an
optimal classifier in the present context is as in display (28) and this brings us
to the conclusion: any O that is a monotone increasing transformation of the
likelihood ratio L (x) (is equivalent to the likelihood ratio) will optimize IP .

1.5.3 "Voting Functions," Losses for Them, and Expected 0-1 Loss

The fact that empirical search for a good 2-class classifier is essentially search
for a good approximation to the likelihood ratio function L (x) raises another
kind of consideration for 2-class problems. That is the possibility of focusing
on the building of a good "voting function" g (x) to underlie a classifier.
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For the time being, it’s now convenient to employ the −1-1 coding of class la-
bels (use G = {−1, 1}) and to without much loss of generality consider classifiers
defined for an arbitrary voting function g (x) by

f (x) = sign (g (x))

(except for the possibility that g (x) = 0, that typically has 0 probability for
both classes). Then an optimal voting function for 0-1 loss is

gopt (x) =
p (x|1)

p (x| − 1)
− P [y = −1]

P [y = 1]
(35)

With this notation, a classifier f (x) = sign(g (x)) produces 0-1 loss neatly
written as

L (ŷ, y) = I [yg (x) < 0]

(a loss of 1 is incurred when y and g (x) have opposite signs). So the the 0-1
loss expected loss/error rate has the useful representation

EI [yg (x) < 0] (36)

We have seen that a function g optimizing the average value (36) is gopt (x)
defined in (35). But the indicator function I [u < 0] involved in (36) is discon-
tinuous (and thus non-differentiable), and for some purposes it would be more
convenient to work with a continuous (even differentiable) one in making an
empirical choice of voting function.
If I [u < 0] ≤ h (u), it is obvious that

EI [yg (x) < 0] ≤ Eh (yg (x)) (37)

So the right hand side of display (37) functions as an upper bound for the 0-1
loss error rate and an approximate (data-based) minimizer of that right hand
side used as a voting function can be expected to control 0-1 loss error rate.
Several different continuous choices of "loss" h (u) can be viewed as motivating
popular methods of (voting function and) classifier development. These include:

1. h1 (u) = ln (1 + exp (−u)) / ln (2) a function related to a Bernoulli negative
log-likelihood term when yg (x) is substituted for u,

2. h2 (u) = exp (−u) (the "exponential loss") associated with the AdaBoost.M1
algorithm, and

3. h3 (u) = (1− u)+ (the "hinge loss") associated with "support vector ma-
chines."

For reference, the indicator function I [u < 0] and the functions h1 (u) , h2 (u) ,
and h3 (u) are plotted together in Figure 4.
One reason why this line of argument proves effective is that not only does

bound (37) hold, but minimizers of a Eh (yg (x)) over choice of function g for
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Figure 4: "Losses" I [u < 0] in black, h1 (u) in red, h2 (u) in blue, and h3 (u) in
green.

standard choices of h with h (u) ≥ I [u < 0] are directly related to the likelihood
ratio. This can be seen using the results concerning optimal predictors in 2-class
classification models from Section 1.5.2. That is,

Eh1 (yg (x)) = EL1 (g (x) , y) has optimizer gopt1 (x) = ln

(
P [y = 1|x]

P [y = −1|x]

)
Eh2 (yg (x)) = EL2 (g (x) , y) has optimizer gopt2 (x) =

1

2
ln

(
P [y = 1|x]

P [y = −1|x]

)
and

Eh3 (yg (x)) = EL3 (g (x) , y) has optimizer gopt3 (x) = sign
(
P [y = 1|x]

P [y = −1|x]
− 1

)
The first two functions are are monotone transformations of the likelihood ratio
and when used as a voting function produce a (0-1 loss) optimal classifier. The
third is the optimal classifier itself.

So empirical search for optimizers of (an empirical version of) the risk
Eh (yg (x)) can produce good classifiers. This has the fascinating effect of
making SEL prediction and classification look very much alike. Ultimately,
in development of a predictor, one is searching among some class of functions,
S, for a real-valued g making an appropriate empirical approximation of a risk
measure small.

1.6 Density Estimation and Approximately Optimal and
Naive Bayes Classification

As another preliminary, we make a few comments on the problem of density
estimation. One might phrase the problem of describing structure for x in
terms of estimating a pdf for the variable. And a naive way of approximating
a theoretically optimal classifier might be to directly estimate both class proba-
bilities and class conditional densities and use them in place of their estimands
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in the optimal form (2) to produce

f̂ (x) = arg max
k

̂P [y = k] p̂ (x|k) (38)

So we consider the problem:

given x1,x2, . . . ,xN iid with (unknown) pdf q (x) , how to estimate q?

Initially suppose that p = 1. For g (·) some fixed pdf (like, for example,
the standard normal pdf), invent a location-scale family of densities on < by
defining (for "bandwidth" λ > 0)

h (·|θ, λ) =
1

λ
g

(
· − θ
λ

)
One may think of a corresponding "kernel" (this is a potentially different usage
of the word "kernel" than that in Section 1.4.3 and no non-negative definiteness
of the function is needed or assumed)

Kλ (·, θ) ≡ g
(
· − θ
λ

)
The Parzen estimate of q (x0) is then

q̂λ (x0) =
1

N

N∑
i=1

h (x0|xi, λ)

=
1

λN

N∑
i=1

Kλ (x0, xi)

an average of kernel values.
A standard choice of univariate density g (·) is φ (·), the standard normal

pdf. A way to think about the density estimate that results from using a
normal kernel is as representing the distribution of "a random choice from the
training set perturbed by a mean 0 normal error with standard deviation equal
to the bandwidth." If the bandwidth is extremely small, the density estimate
will essentially consist of "spikes" at the xi in the training set. If it is extremely
large, the density estimate will essentially consist of a normal density centered
around the mean of the xi. Useful bandwidths will be neither extremely small
nor extremely large.
Figure 5 provides a p = 1 pdf q (x) (in black), a sample of size N = 100

from the distribution and three Parzen estimates of q made with g (·) = φ (·)
and bandwidths λ = .2 (red), .4 (blue), and .5 (green).
The natural generalization of this to p dimensions is to use a MVNp density

as a kernel (scaled according to λ). One should expect that unlessN is huge, this
methodology will be reliable only for fairly small p (say 3 at most) as a means of
estimating a general p-dimensional pdf. Figure 6 provides two representations
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Figure 5: A p = 1 density, a corresponding sample of N = 100 values x, and
three density estimates based on different bandwidths.

Figure 6: Two representations of a particular 2-d pdf (a mixture of two bivariate
normal desnities).

of a bivariate density. Figure 7 then shows several samples of size N = 100
from the density and corresponding bivariate kernel density estimates made with
software-default choices of multivariate bandwidth covariance matrices.
In the event that N is big, dimension p is low, and K is small, one might at

least consider estimating the densities p (x|k) (with, say, kernel density estimates

p̂ (x|k)) using relative frequencies of values of y (say ̂P [y = k]) to estimate the
probabilities P [y = k], and employing a classifier like the one in display (38).
Figure 8 shows for a sample of size N = 100 from both the bivariate density of
Figure 6 and a uniform density on [−3, 3]

2 density estimates and their ratio (an
approximate likelihood ratio). Since the denominator density is uniform the
actual likelihood ratio is equivalent to the density portrayed in Figure 6 and it
seems like (for this sample at least) an approximation to a Bayes classifier based
on density estimates might work reasonably well in this particular problem.
It is worth considering the form that such estimated-density-approximately-

Bayes classifiers take in the case where symmetric Gaussian kernels are used.
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Figure 7: 6 samples of size N = 100 from the bivariate density of Figure 6
and density estimates made using the kde2d function in the MASS package with
default choice of "bandwidth" covariance matrix.

Figure 8: Two N = 100 density estimates and their ratio for classifcations
between Uniform [−3, 3]

2 and the distribution of Figure 6.

That is, consider the case where one uses as a multivariate density estimate

q̂ (x) =
1

N

N∑
i=1

φ
(
x|xi, λ2I

)
(where φ (·|θ,Σ) is the MVNp density with mean vector θ and covariance matrix
Σ). A bit of algebra shows that with this kind of multivariate estimates of
class-conditional densities (based on the parts of the training set with y = k)
(and using training set relative frequencies to estimate class probabilities) the
approximately Bayes classifier is

f̂λ (x) = arg max
k

∑
i s.t. yi=k

exp

(
− 1

2λ2
‖x− xi‖2

)
This is a plausible kind of form, classifying to class k when x is "close to"
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relatively many training inputs from class k. The bandwidth might be chosen
based on cross-validation of classifier performance.
The statistical folklore is that this kind of classifier can work poorly in high

dimensions because of the imprecisions (large variances) of the density estima-
tors. The "estimated density" approximations to the optimal rule are based
on what are usually low-bias-but-high-variance estimators. As such, the corre-
sponding classifiers are very flexible, but can perform poorly for small training
sets. Less flexible classification methods will often perform much better in prac-
tical problems (although those methods may be incapable of approximating the
optimal rule for all cases, even if N is huge).

There is a variant of form (38) that is thought to sometimes be effective even
when p is not small (and p-dimensional density estimation is hopeless). The
basic idea is to estimate 1-dimensional marginals of the p (x|k)s and use their

products in place of p̂ (x|k)s. That is, if for each k the density p (x|k) : <p → <+
has marginal densities p1 (x1|k) , p2 (x2|k) , . . . , pp (xp|k) (each mapping < →
<+), while it may not be feasible to estimate p (x|k), it could be possible to
effectively estimate p1 (x1|k) , p2 (x2|k) , . . . , pp (xp|k). If this is the case, the
classifier

f̂ (x) = arg max
k

̂P [y = k]

p∏
j=1

̂pj (xj |k)

might be employed. (That is, one might treat elements xj of x as if they were
independent for every k, and multiply together kernel estimates of marginal
densities.) This has been called a "naive Bayes" classifier.
The method seems to have a reputation for often being useful. But there

will certainly be situations where it doesn’t work very well because of failure
to account for strong dependencies between input variables. Figure 9 shows
the common marginal for x1 and x2 corresponding to the distribution of Figure
6. Figure 10 then shows the original bivariate density and the distribution of
independence with the same marginals. The product density is clearly quite
different from the original and estimation of the marginals alone can at best
only reproduce the product form.

Figure 9: The common marginal pdf for both x1 and x2 for the bivariate distri-
bution of Figure 6.

48



Figure 10: Original bivariate density from Figure 6 and a product density based
on the marginal(s) (as pictured in Figure 9).

1.7 Plotting to Portray the Effects of Particular Inputs in
Prediction

An issue briefly discussed in HTF Ch 10 is the making and plotting of functions
a few of the coordinates of x in an attempt to understand the nature of the
influence of these in a predictor. (What they say is really perfectly general,
not at all special to the particular form of predictors discussed in that chapter.)
If, for example, I want to understand the influence the first two coordinates of
x have on a form f (x), I might think of somehow averaging out the remaining
coordinates of x. One theoretical implementation of this idea would be

f12 (x1, x2) = E(x3,x4,...,xp)f (x1, x2, x3, x4, . . . , xp)

i.e. averaging according to the marginal distribution of the excluded input
variables. An empirical version of this is

1

N

N∑
i=1

f (x1, x2, x3i, x4i, . . . , xpi)

This might be plotted (e.g. in contour plot fashion) and the plot called a partial
dependence plot for the variables x1 and x2. HTF’s language is that this
function details the dependence of the predictor on (x1, x2) "after accounting
for the average effects of the other variables." This thinking amounts to a
version of the kind of thing one does in ordinary factorial linear models, where
main effects are defined in terms of average (across all levels of all other factors)
means for individual levels of a factor, two-factor interactions are defined in
terms of average (again across all levels of all other factors) means for pairs of
levels of two factors, etc.
Something different raised by HTF is consideration of

f̃12 (x1, x2) = E [f (x) |x1, x2]
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(This is, by the way, the function of (x1, x2) closest to f (x) in L2 (P ).) This is
obtained by averaging not against the marginal of the excluded variables, but
against the conditional distribution of the excluded variables given x1 and x2.
No workable empirical version of f̃12 (x1, x2) can typically be defined. And it
should be clear that this is not the same as f12 (x1, x2). HTF say this in some
sense describes the effects of (x1, x2) on the prediction "ignoring the impact
of the other variables." (In fact, if f (x) is a good approximation for E[y|x],
this conditioning produces essentially E[y|x1, x2] and f̃12 is just a predictor of
y based on (x1, x2).)
The difference between f12 and f̃12 is easily seen through resort to a simple

example. If, for example, f is additive of the form

f (x) = h1 (x1, x2) + h2 (x3, . . . , xp)

then

f12 (x1, x2) = h1 (x1, x2) + Eh2 (x3, . . . , xp)

= h1 (x1, x2) + constant

while
f̃12 (x1, x2) = h1 (x1, x2) + E [h2 (x3, . . . , xp) |x1, x2]

and the f̃12 "correction" to h1 (x1, x2) is not necessarily constant in (x1, x2).
The upshot of all this is that partial dependence plots are potentially helpful,

but that one needs to remember that they are produced by averaging according
to the marginal of the set of variables not under consideration.

2 Some Linear Theory, Linear Algebra, and Prin-
cipal Components

Methods of modern multivariate statistical learning often involve more back-
ground in the theory of linear spaces and linear algebra than is assumed or used
in a basic linear models course. So here we provide some of that and then apply
it to the unsupervised learning problem of "principal components analysis."

2.1 Inner Product Spaces

Most of applied mathematics in general and statistical machine learning in par-
ticular is built on the notions of "linear combinations" of various objects and
"inner products" of these (that in turn lead to coherent notions of their "sizes"
and of "distances" between them). Here we briefly review what is necessary
for a theory of such objects and operations to make sense.
First, a vector (or linear) space V consists of objects v,w, . . . such that if

v ∈ V and a ∈ <, then the object av makes sense and belongs to V , and for v
andw in V the object v+w also makes sense and belongs to V . The archetypal
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vector spaces are the Euclidean spaces <p where elements are "ordinary" p-
dimensional vectors. But other kinds of vector spaces are useful in statistical
machine learning as well, including function spaces. Take for example the set
of functions on [0, 1] that have finite integrals of their squares. (This space
is sometimes known as L2 ([0, 1]).) More or less obviously, if g : [0, 1] → <
with

∫ 1
0

(g (x))
2
dx < ∞ and a ∈ <, then ag (x) makes sense, maps [0, 1] to <

and has
∫ 1
0

(ag (x))
2
dx = a2

∫ 1
0

(g (x))
2
dx < ∞. Further, if g : [0, 1] → <

with
∫ 1
0

(g (x))
2
dx < ∞ and h : [0, 1] → < with

∫ 1
0

(h (x))
2
dx < ∞, then the

function g (x) + h (x) makes sense, maps [0, 1] to < and has finite integral of its
square.
The notion of an inner product (of pairs of elements of a vector space V ) is

that of a symmetric (bi-)linear positive definite function 〈v,w〉 mapping V ×
V → <. That is, 〈v,w〉 is an inner product on the vector space V if it satisfies

1. 〈w,v〉 = 〈v,w〉 ∀ v,w ∈ V (symmetry),

2. 〈av,w〉 = a 〈v,w〉 ∀ v,w ∈ V and a ∈ <,
〈v + u,w〉 = 〈v,w〉+ 〈u,w〉 ∀ u,v, and w ∈ V (bilinearity), and

3. 〈v,v〉 ≥ 0 ∀ v ∈ V and 〈v,v〉 = 0 if and only if v = 0 (positive definite-
ness).

Of course Euclidean p-space is a vector space with inner product defined as the
"dot-product" of p-dimensional vectors v and w, namely

〈v,w〉 = v′w =

p∑
j=1

vjwj

It is possible to argue that in the case of the L2 ([0, 1]) function space, the
integral of the product of two elements provides a valid inner product, that is

〈g, h〉 ≡
∫ 1

0

g (x)h (x) dx

satisfies 1. through 3.
An inner product on a vector space V leads immediately to notions of size

and distance in the space. The norm (i.e. the "size" or "length") of an element
of V can be coherently defined as

‖v‖ ≡
√
〈v,v〉

Then the distance between two elements of V can be taken to be the size of the
difference between them. That is, the distance between v and w belonging to
V (say d (v,w)) derived from the inner product is

d (v,w) = ‖v −w‖
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This satisfies all the properties necessary to qualify as a "metric" or "distance
function," including the important triangle inequality.
In Euclidean p-space, the norm is the geometrical length of a p-vector (the

root of the sum of the p squared entries of the vector) and the associated distance
is ordinary Euclidean distance. In the case of the L2 ([0, 1]) function space, the
norm/size of an element g is

‖g‖ =

√∫ 1

0

(g (x))
2
dx

and the distance between elements g and h is

d (g, h) =

√∫ 1

0

(g (x)− h (x))
2
dx

Many other useful notions commonly understood in Euclidean spaces gen-
eralize directly to more abstract vector spaces and inner product spaces. v
and w ∈ V are perpendicular or orthogonal when 〈v,w〉 = 0. Subspaces of
V can be generated as all linear combinations of a set of elements of V and
are commonly referred to as the "span" of the set of elements. A basis for a
subspace of V is a set of linearly independent vectors (no linear combination
of them is the 0 vector) that span the subspace. "Orthonormal" bases (whose
elements are perpendicular and each of norm 1) for V (or for subspaces of V )
are particularly attractive, as they provide very simple representations for "pro-
jections" of v ∈ V onto the span of any set of them, as a linear combination of
basis vectors where coeffi cients are the inner products with the corresponding
basis vectors. In the context of machine learning, projections of a vector v are
very usefully thought of as "low-dimensional" approximations to v (in terms
of a "few" basis vectors). (The dimension of a subspace of V is, just as in
ordinary Euclidean spaces, the number of vectors in a basis for it.) Geometry
of Euclidean cases (where subspaces are geometrical hyperplanes containing the
origin and geometrical hyperplanes are subspaces potentially shifted from the
origin by addition of a vector not in the subspace) is helpful in interpreting
statistical machine learning constructs in more abstract inner product spaces.

2.2 The (General) Gram-Schmidt Process and the QR
Decomposition of a rank = p Matrix X

We continue to use the notation

X
N×p

=


x′1
x′2
...
x′N

 and potentially Y
N×1

=


y1
y2
...
yN


and recall that it is standard linear models fare that ordinary least squares
projects Y onto C (X), the column space of X, in order to produce the vector
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of fitted values

Ŷ
N×1

=


ŷ1
ŷ2
...
ŷN


For many purposes it would be convenient if the columns of a full rank

(rank = p) matrix X were orthogonal. In fact, it would be useful to replace
the N×pmatrixX with an N×pmatrix Z with orthogonal columns and having
the property that for each l ifX l and Zl areN×l consisting of the first l columns
of respectively X and Z, then C (Zl) = C (X l). Such a matrix can in fact be
constructed using the so-called Gram-Schmidt process. This process generalizes
beyond the present application to <N to general inner product spaces, and in
recognition of that important fact we’ll first describe it in general terms and
then consider its implications for a (rank = p) matrix X.
Consider p vectors x1,x2, . . . ,xp (that could be N -vectors where xj is the

jth column of X)14 . The Gram-Schmidt process proceeds as follows:

1. Set
z1 = x1 and q1 = 〈z1, z1〉−1/2 z1 =

1

‖z1‖
z1

2. Having constructed {z1, z2, . . . ,zl−1}, let

zl = xl −
l−1∑
j=1

〈xl, zj〉
〈zj , zj〉

zj = xl −
l−1∑
j=1

〈
xl, qj

〉
qj and ql =

1

‖zl‖
zl

Figure 11 illustrates this construction for a simple case of p = 2. zl is
the part of xl that "sticks out of the subspace spanned by z1, z2, . . . ,zl−1" the
difference between xl and the perpendicular projection of that vector onto the
subspace. ql is the normalized version of zl, the unit vector pointing in the
same direction as zl.
It is easy enough to see that 〈zl, zj〉 = 0 for all j < l (building up the

orthogonality of z1, z2, . . . ,zl−1 by induction), since

〈zl, zj〉 = 〈xl, zj〉 − 〈xl, zj〉

as at most one term of the sum in step 2. above is non-zero. Further, assume
that the span of {z1, z2, . . . ,zl−1} is the same as the span of {x1,x2, . . . ,xl−1}.
zl is in the span of {x1,x2, . . . ,xl} so that the span of {z1, z2, . . . ,zl} is a
subset of the span of {x1,x2, . . . ,xl}. And since any element of the span of
{x1,x2, . . . ,xl} can be written as a linear combination of an element of the span
of {z1, z2, . . . ,zl−1} (span of {x1,x2, . . . ,xl−1}) and xl we also have that the
14Notice that this is in potential conflict with earlier notation that made xi the p-vector

of inputs for the ith case in the training data. We will simply have to read the following in
context and keep in mind the local convention.
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Figure 11: A p = 2 illustration of the Gram-Schmidt construction of an ortho-
normal basis for the subspace space spanned by x1 and x2.

span of {x1,x2, . . . ,xl} is a subset of the span of {z1, z2, . . . ,zl}. That is that
{z1, z2, . . . ,zl} and {x1,x2, . . . ,xl} have the same span and the set of vectors

q1, q2, . . . , ql

form an orthonormal basis for the span of {x1,x2, . . . ,xl}.
Since the zj are perpendicular, for any vector w,

l∑
j=1

〈w, zj〉
〈zj , zj〉

zj =

l∑
j=1

〈
w, qj

〉
qj (39)

is the projection ofw onto the span of {z1, z2, . . . ,zl} (of {x1,x2, . . . ,xl}). (To
see this, consider minimization of the quantity

〈
w −

∑l
j=1 cjzj ,w −

∑l
j=1 cjzj

〉
=∥∥∥w −∑l

j=1 cjzj

∥∥∥2 by choice of the constants cj .) In particular,∑l−1
j=1

〈
xl, qj

〉
qj

in step 2. of the Gram-Schmidt process is the projection of xl onto the span of
{x1,x2, . . . ,xl−1}.
Consider now the case where Euclidean N -vectors x1,x2, . . . ,xp are the

columns of a data matrix X. Spans are column spaces of matrices. Indeed the
N×p matrix Z has orthogonal columns and the property that C (Zl) = C (X l).
And the set of vectors {q1, q2, . . . , ql} is an orthonormal basis for this column
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space. So the projection of a vector of outputs Y onto C (X l) is

l∑
j=1

〈Y , zj〉
〈zj , zj〉

zj =

l∑
j=1

〈
Y , qj

〉
qj

This means that for a full p-variable regression,

〈Y , zp〉
〈zp, zp〉

is the regression coeffi cient for zp and (since only zp involves it) the last vari-
able in X, xp. So, in constructing a vector of fitted values, fitted regression
coeffi cients in multiple regression can be interpreted as weights to be applied to
that part of the input vector that remains after projecting the predictor onto
the space spanned by all the others.
The construction of the orthogonal variables zj can be represented in matrix

form as
X
N×p

= Z
N×p

Γ
p×p

where Γ is upper triangular with

γkj = the value in the kth row and jth column of Γ

=

 1 if j = k
〈zk,xj〉
〈zk, zk〉

if j > k

Defining

D = diag
(
〈z1, z1〉1/2 , . . . , 〈zp, zp〉1/2

)
= diag (‖z1‖ , . . . , ‖zp‖)

and letting
Q = ZD−1 and R = DΓ

one may write
X = QR (40)

that is the so-called QR decomposition of X.
Note that the notation used here is consistent, in that for qj the jth column

of Q, qj = (〈zj , zj〉)−1/2 zj as was used in defining the Gram-Schmidt process.
In display (40), Q is N × p with

Q′Q = D−1Z ′ZD−1 = D−1diag (〈z1, z1〉 , . . . , 〈zp, zp〉)D−1 = I

consistent with the fact that Q has for columns perpendicular unit vectors that
form a basis for C (X). R is upper triangular and that says that only the first
l of these unit vectors are needed to create xl.
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The decomposition is computationally useful in that the projection of a
response vector Y onto C (X) is

Ŷ =

p∑
j=1

〈
Y , qj

〉
qj = QQ′Y (41)

and
β̂
ols

= R−1Q′Y

(The fact that R is upper triangular implies that there are effi cient ways to
compute its inverse.)

2.3 The Singular Value Decomposition of X

If the N × p matrix X has rank r then it has a so-called singular value decom-
position as

X
N×p

= U
N×r

D
r×r

V ′
r×p

where U has orthonormal columns (left singular vectors) spanning C (X), V
has orthonormal columns (right singular vectors) spanning C

(
X ′
)
(the row

space of X), and D = diag (d1, d2, . . . , dr) for

d1 ≥ d2 ≥ · · · ≥ dr > 0

the dj are the "singular values" of X.15

An interesting property of the singular value decomposition is this. IfU l and
V l are matrices consisting of the first l ≤ r columns of U and V respectively,
then

X∗l = U l diag (d1, d2, . . . , dl)V
′
l

is the best (in the sense of squared distance from X in <Np) rank = l approx-
imation to X. (Note that application of this kind of argument to covariance
matrices provides low-rank approximations to complicated covariance matrices.)
Since the columns of U are an orthonormal basis for C (X), the projection

of an output vector Y onto C (X) is

Ŷ
ols

=

r∑
j=1

〈Y ,uj〉uj = UU ′Y (42)

In the full rank (rank = p) X case, this is of course, completely parallel to
representation (41) and is a consequence of the fact that the columns of both U
and Q (from the QR decomposition of X) form orthonormal bases for C (X).
In general, the two bases are not the same.

15For a real non-negative definite square matrix (a covariance matrix), the singular value
decomposition is the eigen decomposition, U = V , columns of these matrices are unit eigen-
vectors, and the SVD singular values are the corresponding eigenvalues.
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Now using the singular value decomposition of a full rank (rank p) X,

X ′X = V D′U ′UDV ′

= V D2V ′ (43)

which is the eigen (or spectral) decomposition of the symmetric and positive
definite X ′X. (The eigenvalues are the squares of the SVD singular values.)

The vector
z1 ≡Xv1

is the product Xw with the largest squared length in <N subject to the con-
straint that ‖w‖ = 1. A second representation of z1 is

z1 = Xv1 = UDV ′v1 = UD


1
0
...
0

 = d1u1

and we see that this largest squared length is d21 and the vector points in the
direction of u1. In general,

zj = Xvj =

 〈x1,vj〉
...

〈xN ,vj〉

 = djuj (44)

is the vector of the form Xw with the largest squared length in <N subject to
the constraints that ‖w‖ = 1 and 〈w, zl〉 = 0 for all l < j. The squared length
is d2j and the vector points in the direction of uj .

2.3.1 The Singular Value Decomposition and General Inner Product
Spaces

It is potentially useful to consider the relevance of the SVD for matrices to
geometry in abstract inner product spaces (e.g. because of the machine learning
practice of adopting features that are not elements of a Euclidean space, but
rather functions). So, suppose that N vectors w1,w2, . . . ,wN span a subspace
of the inner product space A of dimension r and that e1, e2, . . . , er form an
orthonormal basis for that subspace. Consider then the matrix

X
N×r

=
(
〈wi, ej〉A

)
i=1,2,...,N
j=1,2,...,r

(45)

X represents the vectors w1,w2, . . . ,wN in the sense that its rows give coeffi -
cients to be applied to the elements of the orthonormal basis (the es) in order
to make linear combinations that are the ws.
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Now, as above, consider the SVD of X and some related elements of A.
Begin with elements of A related to the right singular vectors vj ∈ <r. Corre-
sponding to them are vectors

aj =

r∑
l=1

vjlel

(the real entries of vj supplying coeffi cients for the es in order to make up aj
as a linear combination of the basis vectors). Notice that

〈aj ,aj′〉A =

r∑
l=1

vjlvj′l = I [j = j′]

and so a1,a2, . . . ,ar form a second orthonormal basis for A.
Now

N∑
i=1

〈wi,a1〉2A =
∥∥∥(〈wi,a1〉A)

i=1,2,...,N

∥∥∥2

=

∥∥∥∥∥∥
(

r∑
l=1

v1l 〈wi, el〉A

)
i=1,2,...,N

∥∥∥∥∥∥
2

= ‖Xv1‖2

has the maximum value of

N∑
i=1

〈
wi,

r∑
l=1

clel

〉2
A

=

∥∥∥∥∥∥
(〈

wi,

r∑
l=1

clel

〉
A

)
i=1,2,...,N

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
(

r∑
l=1

cl 〈wi, el〉A

)
i=1,2,...,N

∥∥∥∥∥∥
2

= ‖Xc‖2

possible for c a unit vector in <r and thus
∑r
l=1 clel a unit vector in A. That is,

a1 is a unit vector in A pointing in a direction such that the projections of the
wi onto the 1-dimensional subspace of multiples of it have the largest possible
sum of squared norms. In general, aj is a unit vector in A perpendicular to all
of a1,a2, . . . ,aj−1 with maximum sum of squared norms for the projections of
the wi onto the 1-dimensional subspace of multiples of it.
In a case where a transform T maps <p to an inner product space A, and

one is interested in the subspace of A of dimension r ≤ N spanned by the image
of the set of training input vectors

{T (x1) , T (x2) , . . . , T (xN )} ,

with wi = T (xi), the foregoing then translates the SVD of the matrix (45)
into abstract inner product space geometrical insights concerning transformed
training vectors.
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2.4 Matrices of Centered Columns and Principal Compo-
nents

In the event that all the columns of X have been centered (each 1′xj = 0 for
xj the jth column of X), there is additional terminology and insight associated
with singular value decompositions as describing the structure of X. Note
that centering is often sensible in unsupervised learning contexts because the
object is to understand the internal structure of the data cases xi ∈ <p, not
the location of the data cloud (that is easily represented by the sample mean
vector). So accordingly, we first translate the data cloud to the origin.
Principal components ideas are then based on the singular value decom-

position of X
X
N×p

= U
N×r

D
r×r

V ′
r×p

(and related spectral/eigen decompositions of X ′X and XX ′).

2.4.1 "Ordinary" Principal Components

The columns of V (namely v1,v2, . . . ,vr) are called the principal component
directions in <p of the xi, and the elements of the vectors zj ∈ <N from display
(44), namely the inner products 〈xi,vj〉, are called the principal components
of the xi. (The ith element of zj , 〈xi,vj〉, is the value of the jth principal
component for case i, or the corresponding principal component score. The
entries of the p× 1 vector vj are sometimes called the component weights or
loadings for the jth component. A 0 loading means that the corresponding
column of X is ignored in the creation of zj .) Notice that 〈xi,vj〉vj is the
projection of xi onto the 1-dimensional space spanned by vj .
Figure 12 provides a summary of the language just introduced. (The N × p

matrix of inner products 〈xi,vj〉 is UD.)

Figure 12: Summary of principal components language.

Figure 13 shows scatterplots of a raw (red) and corresponding standardized
(blue) p = 2 dataset. The red arrow points in the direction of the raw data
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first right singular vector (i.e. points "at" the raw data). The blue arrow is in
the first principal component direction of the standardized data (pointing
in the direction of their greatest variation).

Figure 13: Example of a small p = 2 dataset (red dots) and standardized version
(blue dots) and (multiples of) the first right singular vector of the dataset and
the first principal direction of the standardized dataset.

It is worth thinking a bit more about the form of the product

X∗l = U l diag (d1, d2, . . . , dl)V
′
l

that we’ve already said is the best rank l approximation to X. In fact it is

X∗l =

l∑
j=1

djujv
′
j =

l∑
j=1

zjv
′
j = (z1, z2, . . . ,zl)


v′1
v′2
...
v′l


and its ith row is

∑l
j=1 〈xi,vj〉v′j , which (since the vj are orthonormal) is the

transpose of the projection of xi onto C (V l). That is,

X∗l =

 〈x1,v1〉
...

〈xN ,v1〉

v′1 +

 〈x1,v2〉
...

〈xN ,v2〉

v′2 + · · ·+

 〈x1,vl〉
...

〈xN ,vl〉

v′l
= z1v

′
1 + z2v

′
2 + · · ·+ zlv′l

= Xv1v
′
1 +Xv2v

′
2 + · · ·+Xvlv′l

60



a sum of rank 1 summands, producing for X∗l a matrix with each xi in X
replaced by the transpose of its projection onto C (V l).

Since zj = djuj , zjv′j = djujv
′
j . Then since the ujs and vjs are unit

vectors, the sum of squared entries of both zj and zjv′j is d
2
j . These are non-

increasing in j. So the zj and zjv′j decrease in "size" with j, and directions
v1,v2, . . . ,vr are successively "less important" in describing variation in the
xi and in reconstructing X. This agrees with common interpretation of cases
where a few singular values are much bigger than the others. There "simple
structure" in the data is that observations can be more or less reconstructed as
linear combinations of a few orthonormal vectors.
Figure 14 portrays a hypothetical p = 3 dataset. Shown are the N = 9 data

points, the rank = 1 approximation (black balls on the line defined by the first
PC direction) and the rank = 2 approximation (black stars on the plane).

Figure 14: Principal components approximations to a p = 3 dataset.

Izenman, in his discussion of "polynomial principal components" points out
that in some circumstances the existence of a few very small singular values can
also identify important simple structure in a dataset. Suppose, for example,
that all singular values except dp ≈ 0 are of appreciable size. One simple feature
of the dataset is then that all 〈xi,vp〉 ≈ 0, i.e. there is one linear combination
of the p coordinates xj that is essentially constant (namely 〈x,vp〉). The
data fall nearly on a (p− 1)-dimensional hyperplane in <p. In cases where
the p coordinates xj are not functionally independent (for example consisting
of centered versions of 1) all values, 2) all squares of values, and 3) all cross
products of values of a smaller number of functionally independent variables), a
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single "nearly 0" singular value identifies a quadratic function of the functionally
independent variables that must be essentially constant, a potentially useful
insight about the dataset.
To summarize interpretation of principal components of a centered dataset,

one can say the following:

Principal components analysis amounts to the development of an
alternative coordinate system in which to represent a p-dimensional
dataset. One effectively finds a rotation of the original coordi-
nate system to a new one where axes are defined by the p-vectors
v1,v2, . . . ,vr in which variation of the data in the directions vj
decreases with increasing j (as much as possible with each incre-
ment of j). The N -vectors uj are unit vectors and their multiples
zj = djuj are the vectors of coordinates of the N data vectors in the
new/rotated coordinate system. (And the dj are the magnitudes of
these vectors of new coordinates in <N .)

X ′X and XX ′ and Principal Components The singular value decom-
position of X means that both X ′X and XX ′ have useful representations in
terms of singular vectors and singular values. Consider first X ′X (that is most
of the sample covariance matrix). As noted in display (43), the SVD of X
means that

X ′X = V D2V ′

and it’s then clear that the columns of V are eigenvectors of X ′X and the
squares of the diagonal elements of D are the corresponding eigenvalues. An
eigen analysis of X ′X then directly yields the principal component directions
of the data, and through the further computation of the inner products in (44),
the principal components zj (and hence the singular vectors uj) are available.
Note that

1

N
X ′X

is the (N -divisor) sample covariance matrix16 for the p input variables x1, x2, . . . , xp.
The principal component directions of X in <p, namely v1,v2, . . . ,vr, are also
unit eigenvectors of the sample covariance matrix. The squared lengths of
the principal components zj in <N divided by N are the (N -divisor) sample
variances of entries of the zj , and their values are

1

N
z′jzj =

1

N
dju

′
jujdj =

d2j
N

The SVD of X also implies that

XX ′ = UDV ′V DU ′ = UD2U ′

16Notice that when X has standardized columns (i.e. each column of X, xj , has
〈1,xj〉 = 0 and 〈xj ,xj〉 = N), the matrix 1

N
X′X is the sample correlation matrix for the p

input variables x1, x2, . . . , xp.
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and it’s then clear that the columns of U are eigenvectors of XX ′ and the
squares of the diagonal elements of D are the corresponding eigenvalues. UD
then produces the N × r matrix of principal components of the data. The
principal component directions are unavailable (even indirectly) based only on
this second eigen analysis.

2.4.2 "Kernel" Principal Components

Consider first the possibility of using a nonlinear function φ : <p → <M to map
data vectors x to (a usually higher-dimensional) vector of features φ (x). Of
course, this creates a new N ×M data/feature matrix

Φ =


φ′ (x1)
φ′ (x2)
...

φ′ (xN )


with entries of Φ belonging to <. After centering via

Φ̃ = Φ− 1

N
JΦ =

(
I − 1

N
J

)
Φ (46)

for J an N × N matrix of 1s, one can make a SVD of Φ̃, producing singular
values and both sets of singular vectors for the new feature matrix.
Now, thinking as in Section 1.4.3, suppose K is a kernel function and one

maps data vectors x to elements K (x, ·) in the abstract (function) feature space
A. One can think of finding "principal components" for the transformed train-
ing set in this feature space. First, the function

K (·) ≡ 1

N

N∑
i=1

K (xi, ·)

is a well-defined linear combination of the images of the training set in A and
therefore a sensible "center" of the transformed training set. The functions

K (xi, ·)−K (·) (47)

are then sensible centered abstract feature values for the training set. Next,
corresponding to the matrix of inner products for a centered set of N points
in a Euclidean space is the N × N matrix of inner products of these centered
feature values in the abstract space A,

C≡
(〈
K (xi, ·)−K (·) ,K (xj , ·)−K (·)

〉
A
)
i=1,...,N
j=1,...,N

(48)

Then using the basic reproducing kernel fact that 〈K (x, ·) ,K (z, ·)〉A = K (x, z)
and the notation K for the Gram matrix (21), it is easy enough to find the
representation

C = K − 1

N
JK − 1

N
KJ +

1

N2
JKJ (49)
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for the symmetric non-negative definite C. Finally, an eigen analysis will
produce principal components (N vectors of length N of scores) for the training
data expressed in the abstract feature space.
To realize the entries in these eigen vectors of kernel principal component

scores as inner products of the N functions (47) with "principal component
directions" in the abstract feature space, A, one may return to Section 2.3.1
and begin with any orthonormal basis E1 (·) , E2 (·) , . . . , EN (·) for the span of the
functions (47) (coming, for example, from use of the Gram-Schmidt process).
Then the general inner product space argument beginning with an N×N matrix
with entries

〈
K (xi, ·)−K (·) , Ej (·)

〉
A produces N basis functions V1 (·) ,V2 (·) ,

. . . ,VN (·) whose A inner products with functions (47) are (up to a sign for each
Vj (·)) the entries of the eigen vectors of C. In cases with small p it may be of
interest to examine these abstract principal component direction functions via
some plotting.

2.4.3 Graphical (Spectral) Features

Another variant of principal components ideas concerns "graphical spectral fea-
tures" of a dataset built on thinking of data cases as corresponding to vertices
on a graph. This material has emphases in common with the local version of
multi-dimensional scaling treated in Section 17.3, and can sometimes provide a
way to separate "unconventional" but distinct structures of data points in <p.
The basic motivation is to not necessarily look for "convex" groups of points in
p-space, but rather for "roughly connected"/"contiguous" sets of points of any
shape in p-space.
Begin withN vectors x1,x2, . . . ,xN in <p. Consider weights wij = w (‖xi − xj‖)

for a decreasing function w : [0,∞) −→ [0, 1] and use them to define similar-
ities/adjacencies sij . (For example, we might use w (d) = exp

(
−d2/c

)
for

some c > 0.) Similarities can be exactly sij = wij , but can be even more
"locally" defined as follows. For fixed k consider the symmetric set of index
pairs

Nk =

{
(i, j) | the number of j′ with wij′ > wij is less than k

or the number of i′ with wi′j > wij is less than k

}
(an index pair is in the set if one of the items is in the k-nearest neighbor
neighborhood of the other). One might then define sij = wijI [(i, j) ∈ Nk].
In any case, we’ll call the matrix

S = (sij)i=1,...,N
j=1,...,N

the adjacency matrix, and use the notation

gi =

N∑
j=1

sij

and
G = diag (g1, g2, . . . , gN )
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It is common to think of the points x1,x2, . . . ,xN in <p as nodes/vertices on
a graph, with edges between nodes weighted by similarities sij , and the gi so-
called node degrees, i.e. sums of weights of the edges connected to nodes i.
In such thinking, sij = 0 indicates that there is no "edge" between case i and
case j.

The matrix
L = G− S

is called the (unnormalized) graph Laplacian, and one standardized (with
respect to the node degrees) version of this is

L̃ = G−1L = I −G−1S

and a second standardized version is

L∗ = G−1/2LG−1/2 = I −G−1/2SG−1/2 (50)

Note that for any vector u,

u′Lu =

N∑
i=1

giu
2
i −

N∑
i=1

N∑
j=1

uiujsij

=
1

2

 N∑
i=1

N∑
j=1

siju
2
i +

N∑
j=1

N∑
i=1

siju
2
j

− N∑
i=1

N∑
j=1

uiujsij

=
1

2

N∑
i=1

N∑
j=1

sij (ui − uj)2 (51)

so that the N × N symmetric L is nonnegative definite. Consider the spec-
tral/eigen decomposition ofL and focus on the small eigenvalues. For v1, . . . ,vm
eigenvectors corresponding to the 2nd through (m+ 1)st smallest non-zero eigen-
values (since L1 = 0 there is an uninteresting 0 eigenvalue), let

V = (v1, . . . ,vm)

These are "graphical spectral features" and one might think of cases with simi-
lar rows of V as "alike." As we noted in the discussion in Section 2.4.1, small
eigenvalues are associated with linear combinations of columns of L that are
close to 0.
Why should this work to identify connected structures in a training set? For

vl a column of V that is a eigenvector of L corresponding to a small eigenvalue
λl, by virtue of relationship (51)

λl = v′lLvl =
1

2

N∑
i=1

N∑
j=1

sij (vli − vlj)2 ≈ 0 (52)

and points xi and xj with large adjacencies must have similar corresponding
coordinates of the eigenvectors. HTF (at the bottom of their page 545) essen-
tially argue that the number of "0 or nearly 0" eigenvalues of L is indicative
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of the number of connected structures in the original N data vectors. A series
of points could be (in sequence) close to successive elements of the sequence
but have very small adjacencies for points separated in the sequence. "Struc-
tures" by this methodology need NOT be "clumps" of points, but could also be
serpentine "chains" of points in <p.

A second version of this is easily built on the symmetric normalized
Laplacian (50), L∗. Its eigenvalues are nonnegative and it has a 0 eigen-
value. Let λ∗1 ≤ · · · ≤ λ∗m be the 2nd through (m+ 1)st smallest eigenvalues
and v∗1, . . . ,v

∗
m be corresponding eigenvectors. Then for λ∗l such a small non-

negative eigenvalue,

λ∗l = v∗′l L
∗v∗l = v∗′l

(
G−1/2LG−1/2

)
v∗l =

1

2

N∑
i=1

N∑
j=1

sij

(
v∗li√
gi
−

v∗lj√
gj

)2
≈ 0

(53)
and points xi and xj with large adjacencies must have similar corresponding
coordinates of the vector G−1/2v∗l . So one might treat vectors G−1/2v∗l (or
perhaps normalized versions of them) as a second version ofm graphical features.

It is also easy to see that
P ≡ G−1S

is a stochastic matrix and thus specifying an N -state stationary Markov Chain.
It is plausible that the standardized graph Laplacian L̃ = I−P identifies groups
of states such that transition by such a chain between the groups is relatively
infrequent (the MCMC more typically moves within groups).

Part II

Supervised Learning I: Basic
Prediction Methodology
3 (Non-OLS) SEL Linear Predictors

There is more to say about the development of a linear predictor

f̂ (x) = x′β̂

for an appropriate β̂ ∈ <p than what is said in books and courses on ordinary
linear models (where ordinary least squares is used to fit the linear form to all
p input variables or to some subset of M of them). We continue the basic
notation of Section 2, where the (supervised learning) problem is prediction,
and there is a vector of continuous outputs, Y , of interest.
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3.1 Ridge Regression, the Lasso, and Some Other Shrink-
ing Methods

An alternative to seeking to find a suitable level of complexity in a linear pre-
diction rule through subset selection and least squares fitting of a linear form
to the selected variables, is to employ a shrinkage method based on a penalized
version of least squares to choose a vector β̂ ∈ <p to employ in a linear predic-
tion rule. Here we consider several such methods, all of which have parameters

that function as complexity measures and allow β̂ to range between 0 and β̂
ols

depending upon complexity.
The implementation of these methods is not equivariant to the scaling used

to express the input variables xj . So that we can talk about properties of the
methods that are associated with a well-defined scaling, we assume here that
the output variable has been centered (i.e. that 〈Y ,1〉 = 0) and that the
columns of X have been standardized (and if originally X had a constant
column, it has been removed).

3.1.1 Ridge Regression

For a λ > 0 the ridge regression coeffi cient vector β̂
ridge
λ ∈ <p is

β̂
ridge
λ = arg min

β∈<p

{
(Y −Xβ)

′
(Y −Xβ) + λβ′β

}
(54)

Here λ is a penalty/complexity parameter that controls how much β̂
ols
is shrunken

towards 0. The unconstrained minimization problem expressed in (54) has an
equivalent constrained minimization description as

β̂
ridge
t = arg min

β with ‖β‖2≤t
(Y −Xβ)

′
(Y −Xβ) (55)

for an appropriate t > 0. (Corresponding to λ used in form (54), is t =
∥∥∥β̂ridgeλ

∥∥∥2
used in display (55). Conversely, corresponding to t used in form (55), one
may use a value of λ in display (54) producing the same error sum of squares.)
Figure 15 is a representation of the constrained version of the ridge optimization
problem for p = 2. Pictured are a contour plot for the quadratic error sum of

squares (Y −Xβ)
′
(Y −Xβ) function of β, the constraint region for β, β̂

ols

and β̂
ridge
t .

The unconstrained form (54) calls upon one to minimize

(Y −Xβ)
′
(Y −Xβ) + λβ′β

and some vector calculus leads directly to

β̂
ridge
λ =

(
X ′X + λI

)−1
X ′Y
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Figure 15: Cartoon Representing the Constrained Version of Ridge Optimiza-
tion for p = 2

So then, using the singular value decomposition of X (with rank = r),

Ŷ
ridge
λ = Xβ̂

ridge
λ

= UDV ′
(
V DU ′UDV ′ + λI

)−1
V DU ′Y

= UD
(
V ′
(
V DU ′UDV ′ + λI

)
V
)−1

DU ′Y

= UD
(
D2 + λI

)−1
DU ′Y

=

r∑
j=1

(
d2j

d2j + λ

)
〈Y ,uj〉uj (56)

Comparing to equation (42) and recognizing that

0 <
d2j+1

d2j+1 + λ
≤

d2j
d2j + λ

< 1

we see that the coeffi cients of the orthonormal basis vectors uj employed to

get Ŷ
ridge
λ are shrunken version of the coeffi cients applied to get Ŷ

ols
. The

most severe shrinking is enforced in the directions of the smallest principal
components ofX (the uj least important in making up low rank approximations
to X). Since from representation (56)

∥∥∥Ŷ ridge
λ

∥∥∥2 =

r∑
j=1

(
d2j

d2j + λ

)2
〈Y ,uj〉2

the "size" of the ridge prediction vector for the N centered responses is decreas-
ing in λ.
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Notice also from representation (56) that

Ŷ
ridge
λ =

r∑
j=1

(
1

d2j + λ

)
〈Y ,Xvj〉Xvj

= X

r∑
j=1

(
1

d2j + λ

)
〈Y ,Xvj〉vj

so that

β̂
ridge
λ =

r∑
j=1

(
1

d2j + λ

)
〈Y ,Xvj〉vj

and ∥∥∥β̂ridgeλ

∥∥∥2 =

r∑
j=1

(
1

d2j + λ

)2
〈Y ,Xvj〉2

which is also clearly decreasing in λ. An upshot of these facts about "shrinking"
is that one can think of (the penalty parameter) λ as a complexity parameter
that defines paths in <N and <p from OLS predictions and coeffi cients to degen-
erate (0) ones, passing through a spectrum of plausible (ridge) linear predictors.
There is an interesting "grouping effect" associated with ridge regression.

This is that highly correlated inputs, say xj and xj′ , (being already standardized
so they have sample standard deviation 1 across the training set) will have
ridge regression coeffi cients of essentially the same magnitude. This can be
understood as follows. Without loss of generality, assume that xj and xj′ are
highly positively correlated (so that they are essentially the same variable). For
any regression coeffi cients βj and βj′ and number α (including βj/ (βj + βj′))
the contribution of xj and xj′ to ŷ (and thus the error sum of squares) is

βjxj + βj′xj′ ≈ α (βj + βj′)xj + (1− α) (βj + βj′)xj′

But the contribution of α (βj + βj′) and (1− α) (βj + βj′) to the sum of squared
regression coeffi cients is

α2 (βj + βj′)
2

+ (1− α)
2

(βj + βj′)
2

=
(
α2 + (1− α)

2
)

(βj + βj′)
2

which is minimum at α = 1/2, where the coeffi cients for xj and xj′ are the
same.
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The function

df (λ) = tr
(
X
(
X ′X + λI

)−1
X ′
)

= tr
(
UD

(
D2 + λI

)−1
DU ′

)
= tr

 r∑
j=1

(
d2j

d2j + λ

)
uju

′
j


= tr

 r∑
j=1

(
d2j

d2j + λ

)
u′juj


=

r∑
j=1

(
d2j

d2j + λ

)

is called the "effective degrees of freedom" associated with the ridge regression.
In regard to this choice of nomenclature, note that if λ = 0 ridge regression
is ordinary least squares and this is r, the usual degrees of freedom associated
with projection onto C (X), i.e. trace of the projection matrix onto this column
space.
As λ → ∞, the effective degrees of freedom goes to 0 as (the centered)

Ŷ
ridge
λ goes to 0 (corresponding to a constant predictor). Notice also (for future

reference) that since Ŷ
ridge
λ = Xβ̂

ridge
λ = X

(
X ′X + λI

)−1
X ′Y = MY for

M = X
(
X ′X + λI

)−1
X ′, if one assumes that

CovY = σ2I

(conditioned on the xi in the training data, the outputs are uncorrelated and
have constant variance σ2) then

effective degrees of freedom = tr (M) =
1

σ2

N∑
i=1

Cov (ŷi, yi) (57)

This follows since Ŷ = MY and CovY = σ2I imply that

Cov

 Ŷ
−−
Y

 = σ2

 M
−−
I

 I (M ′|I
)

= σ2
(
MM ′ M
M ′ I

)
and the terms Cov(ŷi, yi) are the diagonal elements of the upper right block
of this covariance matrix. This suggests that tr(M) is a plausible general
definition for effective degrees of freedom for any linear fitting method Ŷ =
MY , and that more generally, the last form in form (57) might be used in
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situations where Ŷ is other than a linear form in Y . Further (reasonably
enough) the last form is a measure of how strongly the outputs in the training
set can be expected to be related to their predictions.
Further, in the linear case with Ŷ = MY ,

effective degrees of freedom = tr (M) =

N∑
i=1

∂ŷi
∂yi

and we see that the effective degrees of freedom is some total measure of how
sensitive predictions are at the training inputs xi to the corresponding training
values yi. This raises at least the possibility that in nonlinear cases, an approx-
imate/estimated value of the general effective degrees of freedom (57) might be
the random variable

N∑
i=1

∂ŷi
∂yi

∣∣∣∣
Y

3.1.2 The Lasso, Etc.

The "lasso" (l
¯
east a

¯
bsolute s

¯
election and s

¯
hrinkage o

¯
perator) and some other

relatives of ridge regression are the result of generalizing the optimization criteria
(54) and (55) by replacing β′ β = ‖β‖2 =

∑p
j=1 β

2
j with

∑p
j=1 |βj |

q for a q > 0.
That produces

β̂
q

λ = arg min
β∈<p

(Y −Xβ)
′
(Y −Xβ) + λ

p∑
j=1

|βj |q
 (58)

generalizing form (54) and

β̂
q

t = arg min
β with

∑p
j=1|βj |

q≤t
(Y −Xβ)

′
(Y −Xβ) (59)

generalizing form (55). The so called "lasso" is the q = 1 case of form (58)
and form (59) and in general, these have been called the "bridge regression"
problems. That is, for t > 0

β̂
lasso
t = arg min

β with
∑p
j=1|βj |≤t

(Y −Xβ)
′
(Y −Xβ) (60)

Because of the shape of the constraint regionβ ∈ <p|
p∑
j=1

|βj | ≤ t
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Figure 16: Cartoon Representing the Constrained Version of Lasso Optimization
for p = 2

(in particular its sharp corners at coordinate axes) some coordinates of β̂
lasso
t

are often 0, and the lasso automatically provides simultaneous shrinking of β̂
ols

toward 0 and rational subset selection. (The same is true of cases of form (59)
with q < 1.)
Figure 16 is a representation of the constrained version of the lasso opti-

mization problem for p = 2. Pictured are a contour plot for the quadratic error
sum of squares (Y −Xβ)

′
(Y −Xβ) function of β, the constraint region for

β, β̂
ols
and β̂

lasso
t .

For comparison purposes, Figure 17 provides representations of p = 2 bridge
regression constraint regions for t = 1. For q < 1 the regions not only have
"corners," but are not convex.

Figure 17: p = 2 "bridge" constraint regions for t = 1.

It is not obvious how to produce a useful version of formula (57), i.e.

effective degrees of freedom =
1

σ2

N∑
i=1

Cov (ŷi, yi)

for the lasso. But Zhou, Hastie, and Tibshirani in 2007 (AOS ) argued that
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this is the mean number of non-zero components of β̂
lasso
λ . Obviously then, the

random variable

d̂f (λ) = the number of non-zero components of β̂
lasso
λ

is an unbiased estimator of the effective degrees of freedom.
There are a number of modifications of the ridge/lasso idea. One is the

"elastic net" idea. This is a compromise between the ridge and lasso methods.
For an α ∈ (0, 1) and some t > 0, this is defined by

β̂
enet
α,t = arg min

β with
∑p
j=1((1−α)|βj |+αβ2j )≤t

(Y −Xβ)
′
(Y −Xβ)

(The constraint is a compromise between the ridge and lasso constraints.) For
comparison purposes, Figure 18 provides some representations of p = 2 elastic
net constraint regions for t = 3 (made using some code of Prof. Huaiqing Wu)
that clearly show the compromise nature of the elastic net. The constraint
regions have "corners" like the lasso regions but are otherwise more rounded
than the lasso regions.

Figure 18: Some p = 2 elastic net constraint regions for t = 3.

The equivalent unconstrained optimization specification of elastic net fitted
coeffi cient vectors is for λ1 > 0 and λ2 > 0

β̂
enet
λ1,λ2 = arg min

β∈<p

(Y −Xβ)
′
(Y −Xβ) + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2j
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Several sources (including a 2005 JRSSB paper of Zhou and Hastie) suggest
that a modification of the elastic net idea, namely

(1 + λ2) β̂
enet
λ1,λ2 (61)

performs better than the original version.

For β̂
enet
λ1,λ2 with r non-zero components andX∗ made up of the corresponding

columns of X, estimated effective degrees of freedom for the unmodified form
of the elastic net are

̂df (λ1, λ2) = tr
(
X∗

(
X ′∗X∗ + λ2I

)−1
X ′∗

)
=

r∑
j=1

(
d2j

d2j + λ2

)
(62)

(for djs the singular values of X∗). The modified form (61) has estimated
effective degrees of freedom (1 + λ2) times this value (62).

Breiman proposed a different shrinkage methodology he called the nonneg-
ative garotte that attempts to find "optimal" reweightings of the elements of

β̂
ols
. That is, for λ > 0 Breiman considered the vector optimization problem

defined by

cλ = arg min
c∈<p with cj≥0, j=1,...,p

(Y −Xdiag (c) β̂
ols)′ (

Y −Xdiag (c) β̂
ols)

+ λ

p∑
j=1

cj


and the corresponding fitted coeffi cient vector

β̂
nng
λ = diag (cλ) β̂

ols
=

 cλ1β̂
ols
1
...

cλpβ̂
ols
p


HTF provide explicit formulas for fitted coeffi cients for the special case of

X with orthonormal columns. (The table below is mostly their Table 4.3.)

Method of Fitting Fitted Coeffi cient for xj

OLS β̂olsj

Best Subset (of Size M) β̂olsj I
[
rank

∣∣∣β̂olsj ∣∣∣ ≤M]
Ridge Regression β̂olsj

(
1

1 + λ

)
Lasso and (1 + λ2) β̂

enet
λ1,λ2

(
signβ̂olsj

)(∣∣∣β̂olsj ∣∣∣− λ

2

)
+

Elastic Net 1
1+λ2

(
signβ̂olsj

)(∣∣∣β̂olsj ∣∣∣− λ1
2

)
+

Nonnegative Garotte β̂olsj

1− λ

2
(
β̂olsj

)2

+
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These formulas show that best subset regression provides a kind of "hard thresh-
olding" of the least squares coeffi cients (setting all but the M largest to 0) and
ridge regression provides (the same) shrinking of all coeffi cients toward 0. Both
the lasso and the nonnegative garotte provide a kind of "soft thresholding"
of the coeffi cients (typically "zeroing out" some small ones). The elastic net
provides both the ridge type shrinkage of all the coeffi cients and the lasso soft
thresholding. Note that in this "orthonormal columns" case, modification of
the elastic net coeffi cient vector as in formula (61) simply reduces it to a cor-
responding lasso coeffi cient vector. (When the predictors are not orthogonal,
i.e. uncorrelated, one can expect the modified elastic net to be something other
than a lasso.)
For comparison purposes, Figure 19 provides plots of the functions (in the

previous table) of OLS coeffi cients giving ridge (blue), lasso (red), and nonneg-
ative garotte (green) coeffi cients for the "orthonormal predictors" case. (Solid
lines are λ = 1 plots and dotted ones are for λ = 3.)

Figure 19: Plots of shrunken coeffi cients for the "orthonomal inputs xj" case.
Ridge is (blue), lasso is (red), and nonnegative garotte is (green).

By now, a wide variety of lasso-like penalized least squares methods have
been suggested, tailored to a variety of special circumstances (and are discussed,
for example, by Hastie, Tibshirani and Wainwright). Notable are so-called
"group lasso," "sparse group lasso," and "fused lasso" methods. To give the
flavor of what has been proposed, we’ll illustrate the (2-) group lasso. If for
some reason the coordinates of x ∈ <p break naturally into 2 groups (say the
first l and last p− l coordinates of x). For a λ > 0, a "group lasso" coeffi cient
vector is of the form

β̂
group lasso
λ = arg min

β∈<p

(Y −Xβ)
′
(Y −Xβ) + λ

√√√√ l∑
j=1

β2j +

√√√√ p∑
j=l+1

β2j


Of course, there can be more than 2 groups, and in the event that each group
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is of size 1 this reduces to the simple lasso.
Looking at the geometry of the kind of constraint regions that are associated

with this methodology, it’s plausible (and correct) that it tends to "zero-out"
coeffi cients in groups associated with the penalty. Figure 20 provides a rep-
resentation of a p = 3 constraint region associated with a grouped lasso where
coordinates 1 and 2 of x are grouped separate from coordinate 3. The corre-
sponding lasso region is shown for comparison purposes.

Figure 20: A p = 3 constraint region associated with a grouped lasso where
coordinates 1 and 2 of x are grouped separate from coordinate 3.

The development of the lasso and related predictors has been built on mini-
mization of a penalized version of the error sum of squares, Nerr for SEL. All of
the theory and representations here are special to this case. But as a practical
matter, as long as one has an effective/appropriate optimization algorithm there
is nothing to prevent consideration of other losses. Possibilities include at least

1. using a negative Bernoulli loglikelihood as a loss and considering penalized
logistic regression (either as simply a means of fitting P [y = 1|x], or for
purposes of producing a good voting function for classification), or

2. using a penalized exponential or hinge loss as in Section 1.5.3 for purposes
of producing a good voting function for classification, or

3. using a penalized negative AUC loss for producing a good ordering func-
tion O.

The first of these is an option in the famous glmnet package in R.

3.1.3 Least Angle Regression (LAR)

Another class of shrinkage methods is defined algorithmically, rather than di-
rectly algebraically, or in terms of solutions to optimization problems. This
includes the LAR (least angle regression). A description of the whole set of
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LAR regression parameters β̂
LAR

(for the case of X with each column cen-
tered and with norm 1 and centered Y ) follows. (This is some kind of
amalgam of the descriptions of Izenman, CFZ, and the presentation in the 2003
paper Least Angle Regression by Efron, Hastie, Johnstone, and Tibshirani.)
Note that for Ŷ a vector of predictions, the vector

ĉ ≡X ′
(
Y − Ŷ

)
has elements that are proportional to the correlations between the columns of
X (the xj) and the residual vector R = Y − Ŷ . We’ll let

Ĉ = max
j
|ĉj | and sj = sign (ĉj)

Notice also that ifX l is some matrix made up of l linearly independent columns
of X, then if β̂ is an l-vector and W = X lβ̂, β̂ can be recovered from W as(
X ′lX l

)−1
X ′lW . (This latter means that if we define a path for Ŷ vectors in

C (X) and know for each Ŷ which linearly independent set of columns of X
is used in its creation, we can recover the corresponding path β̂ takes through
<p.)

1. Begin with Ŷ 0 = 0, β̂0 = 0,and R0 = Y − Ŷ = Y and find

j1 = arg max
j

|〈xj ,Y 〉|

(the index of the predictor xj most strongly correlated with y) and add
j1 to an (initially empty) "active set" of indices, A.

2. Move Ŷ from Ŷ 0 in the direction of the projection of Y onto the space
spanned by xj1 (namely 〈xj1 ,Y 〉xj1) until there is another index j2 6= j1
with

|ĉj2 | =
∣∣∣〈xj2 ,Y − Ŷ 〉∣∣∣ =

∣∣∣〈xj1 ,Y − Ŷ 〉∣∣∣ = |ĉj1 |

At that point, call the current vector of predictions Ŷ 1 and the corre-
sponding current parameter vector β̂1 and add index j2 to the active set
A. As it turns out, for

γ1 = min
j 6=j1

{(
Ĉ0 − ĉ0j

1− 〈xj ,xj1〉

)
,

(
Ĉ0 + ĉ0j

1 + 〈xj ,xj1〉

)}+
(where the "+" indicates that only positive values are included in the
minimization) Ŷ 1 = Ŷ 0 + sj1γ1xj1 = sj1γ1xj1 and β̂1 is a vector of all 0s
except for sj1γ1 in the j1 position. Let R1 = Y − Ŷ 1.

3. At stage l with A of size l, β̂l−1 (with only l − 1 non-zero entries),
Ŷ l−1,Rl−1 = Y −Ŷ l−1, and ĉl−1 = X ′Rl−1 in hand, move from Ŷ l−1 to-
ward the projection of Y onto the sub-space of <N spanned by {xj1 , . . . ,xjl}.
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This is (as it turns out) in the direction of a unit ul vector "making equal
angles less than 90 degrees with all xj with j ∈ A" until there is an index
jl+1 /∈ A with

|ĉl−1,j+1| = |ĉl−1,j1 | ( = |ĉl−1,j2 | = · · · = |ĉl−1,jl | )

At that point, with Ŷ l the current vector of predictions, let β̂l (with only l
non-zero entries) be the corresponding coeffi cient vector, takeRl = Y −Ŷ l

and ĉl = X ′Rl. It can be argued that with

γl = min
j /∈A

{(
Ĉl−1 − ĉl−1,j
1− 〈xj ,ul〉

)
,

(
Ĉl−1 + ĉl−1,j
1 + 〈xj ,ul〉

)}+

Ŷ l = Ŷ l−1 + sjl+1γlul. Add the index jl+1 to the set of active indices,
A, and repeat.

This continues until there are r = rank (X) indices in A, and at that point Ŷ

moves from Ŷ r−1 to Ŷ
ols
and β̂ moves from β̂r−1 to β̂

ols
(the version of an

OLS coeffi cient vector with non-zero elements only in positions with indices in
A). This defines a piecewise linear path for Ŷ (and therefore β̂) that could,

for example, be parameterized by
∥∥∥Ŷ ∥∥∥ or ∥∥∥Y − Ŷ ∥∥∥.

There are several issues raised by the description above. For one, the stan-
dard exposition of this method seems to be that the direction vector ul is pre-
scribed by letting W l = (sj1xj1 , . . . , sjlxjl) and taking

ul =
1∥∥∥W l

(
W ′

lW l

)−1
1
∥∥∥W l

(
W ′

lW l

)−1
1

It’s clear thatW ′
lul =

∥∥∥W l

(
W ′

lW l

)−1
1
∥∥∥−1 1, so that each of sj1xj1 , . . . , sjlxj1

has the same inner product with ul. What is not immediately clear (but is
argued in Efron, Hastie, Johnstone, and Tibshirani) is why one knows that this
prescription agrees with a prescription of a unit vector giving the direction from
Ŷ l−1 to the projection of Y onto the sub-space of <N spanned by {xj1 , . . . ,xjl},
namely (for P l the projection matrix onto that subspace)

1∥∥∥P lY − Ŷ l−1

∥∥∥
(
P lY − Ŷ l−1

)
Further, the arguments that establish that |ĉl−1,j1 | = |ĉl−1,j2 | = · · · =

|ĉl−1,jl | are not so obvious, nor are those that show that γl has the form in
3. above. And finally, HTF actually state their LAR algorithm directly in
terms of a path for β̂, saying at stage l one moves from β̂l−1 in the direction
of a vector with all 0s except at those indices in A where there are the joint
least squares coeffi cients based on the predictor columns {xj1 , . . . ,xjl}. The
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correspondence between the two points of view is probably correct, but is again
not absolutely obvious.

At any rate, the LAR algorithm traces out a path in <p from 0 to β̂
ols
. One

might think of the point one has reached along that path (perhaps parameterized

by
∥∥∥Ŷ ∥∥∥) as being a complexity parameter governing how flexible a fit this

algorithm has allowed, and be in the business of choosing it (by cross-validation
or some other method) in exactly the same way one might, for example, choose
a ridge parameter.
What is not at all obvious but true, is that a very slight modification of

this LAR algorithm produces the whole set of lasso coeffi cients (60) as its path.
One simply needs to enforce the requirement that if a non-zero coeffi cient hits
0, its index is removed from the active set and a new direction of movement
is set based on one less input variable. At any point along the modified LAR
path, one can compute t =

∑p
j=1 |βj |, and think of the modified-LAR path as

parameterized by t. (While it’s not completely obvious, this turns out to be

monotone non-decreasing in "progress along the path," or
∥∥∥Ŷ ∥∥∥).

A useful graphical representation of the lasso path is one in which all coeffi -
cients β̂lassotj are plotted against t on the same set of axes. Something similar is
often done for the LAR coeffi cients (where the plotting is against some measure
of progress along the path defined by the algorithm).

3.2 Two Methods With Derived Input Variables

Another possible approach to finding an appropriate level of complexity in a
fitted linear prediction rule is to consider regression on some number M < p of
predictors derived from the original inputs xj . Two such methods are those of
Principal Components Regression and Partial Least Squares. Here we continue
to assume that the columns of X have been standardized and Y has
been centered.

3.2.1 Principal Components Regression

The idea here is to replace the p columns of predictors in X with the first few
(M) principal components of X (from the singular value decomposition of X)

zj = Xvj = djuj

Correspondingly, the vector of fitted predictions for the training data is

Ŷ
pcr

=

M∑
j=1

〈Y , zj〉
〈zj , zj〉

zj

=

M∑
j=1

〈Y ,uj〉uj (63)
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Comparing this to displays (42) and (56) we see that ridge regression shrinks
the coeffi cients of the principal components uj according to their importance
in making up X, while principal components regression "zeros out" those least
important in making up X. Further, since the uj constitute an orthonormal
basis for C (X), for rank (X) = r,

∥∥∥Ŷ pcr
∥∥∥2 =

M∑
j=1

〈Y ,uj〉2 ≤
r∑
j=1

〈Y ,uj〉2 =
∥∥∥Ŷ ols

∥∥∥2 (64)

Notice too, that Ŷ
pcr

can be written in terms of the original inputs as

Ŷ
pcr

=

M∑
j=1

〈Y ,uj〉
1

dj
Xvj

= X

 M∑
j=1

〈Y ,uj〉
1

dj
vj


= X

 M∑
j=1

1

d2j
〈Y ,Xvj〉vj


so that

β̂
pcr

=

M∑
j=1

1

d2j
〈Y ,Xvj〉vj (65)

and β̂
ols
is the M = r = rank (X) version of β̂

pcr
. As the vj are orthonormal,

as in relationship (64) above ∥∥∥β̂pcr∥∥∥ ≤ ∥∥∥β̂ols∥∥∥
and principal components regression shrinks both Ŷ

ols
toward 0 in <N and β̂

ols

toward 0 in <p.

3.2.2 Partial Least Squares Regression

The shrinking methods mentioned thus far have taken no account of Y in de-
termining directions or amounts of shrinkage. Partial least squares specifically
employs Y . In what follows, we continue to suppose that the columns of X
have been standardized and that Y has been centered.

The logic of partial least squares is this. Suppose that

z1 =

p∑
j=1

〈Y ,xj〉xj

= XX ′Y
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It is possible to argue that for w1 = X ′Y /
∥∥X ′Y ∥∥ , Xw1 = z1/

∥∥X ′Y ∥∥ is a
linear combination of the columns of X maximizing

|〈Y ,Xw〉|

(which is essentially the absolute sample covariance between the variables y and
x′w) subject to the constraint that ‖w‖ = 1.17 This follows because

〈Y ,Xw〉2 = w′X ′Y Y ′Xw

and a maximizer of this quadratic form subject to the constraint is the eigen-
vector of X ′Y Y ′X corresponding to its single non-zero eigenvalue. It’s then
easy to verify that w1 is such an eigenvector corresponding to the non-zero
eigenvalue Y ′XX ′Y .
Then define X1 by orthogonalizing the columns of X with respect to z1.

That is, define the jth column of X1 by

x1j = xj −
〈xj , z1〉
〈z1, z1〉

z1

and take

z2 =

p∑
j=1

〈
Y ,x1j

〉
x1j

= X1X1′Y

For w2 = X1′Y/
∥∥X1′Y

∥∥ , X1w2 = z2/
∥∥X1′Y

∥∥ is the linear combination of
the columns of X1 maximizing ∣∣〈Y ,X1w

〉∣∣
subject to the constraint that ‖w‖ = 1.
Then for l > 1, define X l by orthogonalizing the columns of X l−1 with

respect to zl. That is, define the jth column of X
l by

xlj = xl−1j −
〈
xl−1j , zl

〉
〈zl, zl〉

zl

and let

zl+1 =

p∑
j=1

〈
Y ,xlj

〉
xlj

= X lX l′Y

17Note that upon replacing |〈Y ,Xw〉| with |〈Xw,Xw〉| one has the kind of optimization
problem solved by the first principal component of X.
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Partial least squares regression uses the first M of these variables zj as input
variables.
The PLS predictors zj are orthogonal by construction. Using the first M

of these as regressors, one has the vector of fitted output values

Ŷ
pls

=

M∑
j=1

〈Y , zj〉
〈zj , zj〉

zj

Since the PLS predictors are (albeit recursively-computed data-dependent) lin-

ear combinations of columns of X, it is possible to find a p-vector β̂
pls
M (namely(

X ′X
)−1

X ′Ŷ
pls
) such that

Ŷ
pls

= Xβ̂
pls
M

and thus produce the corresponding linear prediction rule

f̂ (x) = x′β̂
pls
M (66)

It is tempting to think that in form (66), the number of components, M ,
should function as a complexity parameter. But then again there is the follow-
ing. When the xj are orthogonal, it’s fairly easy to see that z1 is a multiple of

Ŷ
ols
. That is, in this circumstance,

X ′ X = NI

so that
Ŷ
ols

= X
(
X ′X

)−1
X ′ Y =

1

N
XX ′Y =

1

N
z1

i.e.
z1 = N Ŷ

ols

so that
Ŷ
pls
1 = Ŷ

ols

and thus β̂
pls
1 = β̂

pls
2 = · · · = β̂

pls
p = β̂

ols
. All steps of partial least squares

after the first are simply providing a basis for the orthogonal complement of the

1-dimensional subspace of C (X) generated by Ŷ
ols
(without improving fitting

at all). That is, here changing M doesn’t change flexibility of the fit at all.
(Presumably, when the xj are nearly orthogonal, something similar happens.)

This observation about PLS in cases where predictors are orthogonal has
another related implication. That is that there will be no naive form for effective
degrees of freedom for PLS. Since with zj the jth principal component of X
and, say,

ZM = (z1, z2, . . . ,zM )
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we have

Ŷ
pcr

= ZM
((
ZM

)′
ZM

)−1 (
ZM

)′
Y

principal components regression on M components has effective degrees of free-
dom M . But the fact that the "ZM" matrix corresponding to PLS depends
upon Y makes PLS nonlinear in Y . And the "orthogonal X" argument shows
that a PLS predictor with M = 1 can have effective degrees of freedom as large
as rank (X).

PLS, PCR, and OLS Partial least squares is a kind of compromise between
principal components regression and ordinary least squares. To see this, note
that maximizing

|〈Y ,Xw〉|
subject to the constraint that ‖w‖ = 1 is equivalent to maximizing the absolute
sample covariance between Y and Xw i.e.(

sample standard
deviation of y

)
·
(
sample standard
deviation of x′w

)
·
∣∣∣∣( sample correlation

between y and x′w

)∣∣∣∣
or equivalently(

sample variance
of x′w

)
·
(
sample correlation
between y and x′w

)2
(67)

subject to the constraint. Now if only the first term (the sample variance of
x′w) were involved in product (67), a first principal component direction would
be an optimizing w1, and z1 =

∥∥X ′Y ∥∥Xw1 a multiple of the first principal
component of X. On the other hand, if only the second term were involved,

β̂
ols
/
∥∥∥β̂ols∥∥∥ would be an optimizing w1, and z1 = Ŷ

ols ∥∥X ′Y ∥∥ / ∥∥∥β̂ols∥∥∥ a multi-
ple of the vector of ordinary least squares fitted values. The use of the product
of two terms can be expected to produce a compromise between these two.
Note further that this logic applied at later steps in the PLS algorithm then

produces for zl a compromise between a first principal component of X
l−1

and a suitably constrained multiple of the vector of least squares fitted values
based on the matrix of inputs X l−1. The matrices X l have columns that
are the projections of the corresponding columns of X onto the orthogonal
complement in C (X) of the span of {z1, z2, . . . ,zl} (i.e. are corresponding
columns of X minus their projections onto the span of {z1, z2, . . . ,zl}) and
C (X) ⊃ C

(
X1
)
⊃ C

(
X2
)
· · · .

4 Linear SEL Prediction Using Basis Functions

A way of moving beyond prediction rules that are functions of a linear form in
x, i.e. depend upon x through x′β̂, is to consider some set of (basis)18 functions
18The word "basis" is employed here to point to the notion of a "basis" in a linear space

of functions, whereby any function of interest can be represented (or practically speaking, at
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{hm} and predictors of the form or depending upon the form

f̂ (x) =

p∑
m=1

β̂mhm (x) = h (x)
′
β̂ (68)

for h (x)
′

= (h1 (x) , . . . , hp (x)). (The general notation used in Section 1.4.5
was T (x) rather than h (x) being used here. The slight specialization here is to
the case where the components of the vector-valued h (x) are "basis" functions.)

We next consider some flexible methods employing this idea. Notice that
fitting of form (68) can be done using any of the methods just discussed based
on the N × p matrix of inputs

X = (hj (xi)) =


h (x1)

′

h (x2)
′

...
h (xN )

′


(i indexing rows and j indexing columns).

4.1 p = 1 Wavelet Bases

Consider first the case of a one-dimensional input variable x, and in fact here
suppose that x takes values in [0, 1]. One might consider a set of basis function
for use in the form (68) that is big enough and rich enough to approximate
essentially any function on [0, 1]. In particular, various orthonormal bases for
the square integrable functions on this interval (the space of functions L2 [0, 1])
come to mind. One might, for example, consider using some number of functions
from the Fourier basis for L2 [0, 1]{√

2 sin (j2πx)
}∞
j=1
∪
{√

2 cos (j2πx)
}∞
j=1
∪ {1}

For example, using M ≈ N/2 sin-cos pairs and the constant, one could consider
the fitting the forms

f (x) = β0 +

M∑
m=1

β1m sin (m2πx) +

M∑
m=1

β2m cos (m2πx) (69)

If one has training xi on an appropriate regular grid, the use of form (69) leads
to orthogonality in the N × (2M + 1) matrix of values of the basis functions X
and simple/fast calculations.

least approximated) as a linear combination of the the "basis" elements. Periodic functions
of a single variable can be approximated by linear combinations of sine (basis) functions of
various frequencies. General differentiable functions can be approximated by polynomials
(linear combinations of monomial basis functions). Etc.
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Unless, however, one believes that E[y|x = u] is periodic in u, form (69) has
its serious limitations. In particular, unless M is very very large, a trigono-
metric series like (69) will typically provide a poor approximation for a function
that varies at different scales on different parts of [0, 1], and in any case, the co-
effi cients necessary to provide such localized variation at different scales have no
obvious simple interpretations/connections to the irregular pattern of variation
being described. So-called "wavelet bases" are much more useful in providing
parsimonious and interpretable approximations to such functions. The simplest
wavelet basis for L2 [0, 1] is the Haar basis that we proceed to describe.
Define the so-called Haar "father" wavelet

ϕ (x) = I [0 < x ≤ 1]

and the so-called Haar "mother" wavelet

ψ (x) = ϕ (2x)− ϕ (2x− 1)

= I

[
0 < x ≤ 1

2

]
− I

[
1

2
< x ≤ 1

]
Linear combinations of these functions provide all elements of L2 [0, 1] that are
constant on

(
0, 12
]
and on

(
1
2 , 1
]
. Write

Ψ0 = {ϕ,ψ}

Next, define

ψ1,0 (x) =
√

2

(
I

[
0 < x ≤ 1

4

]
− I

[
1

4
< x ≤ 1

2

])
and

ψ1,1 (x) =
√

2

(
I

[
1

2
< x ≤ 3

4

]
− I

[
3

4
< x ≤ 1

])
and let

Ψ1 = {ψ1,0, ψ1,1}
Using the set of functions Ψ0 ∪ Ψ1 one can build (as linear combinations) all
elements of L2 [0, 1] that are constant on

(
0, 14
]
and on

(
1
4 ,

1
2

]
and on

(
1
2 ,

3
4

]
and

on
(
3
4 , 1
]
.

The story then goes on as one should expect. One defines

ψ2,0 (x) = 2

(
I

[
0 < x ≤ 1

8

]
− I

[
1

8
< x ≤ 1

4

])
and

ψ2,1 (x) = 2

(
I

[
1

4
< x ≤ 3

8

]
− I

[
3

8
< x ≤ 1

2

])
and

ψ2,2 (x) = 2

(
I

[
1

2
< x ≤ 5

8

]
− I

[
5

8
< x ≤ 3

4

])
and

ψ2,3 (x) = 2

(
I

[
3

4
< x ≤ 7

8

]
− I

[
7

8
< x ≤ 1

])
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and lets
Ψ2 = {ψ2,0, ψ2,1, ψ2,2, ψ2,3}

Figure 21 shows the sets of basis functions Ψ0,Ψ1, and Ψ2.

Figure 21: Sets of Haar basis functions Ψ0 (blue), Ψ1 (red), and Ψ2 (green).

In general,

ψm,j (x) =
√

2mψ

(
2m
(
x− j

2m

))
for j = 0, 1, 2, . . . , 2m − 1

and
Ψm = {ψm,0, ψm,1, . . . , ψm,2m−1}

The Haar basis of L2 [0, 1] is then

∪∞m=0Ψm
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Then, one might entertain use of the Haar basis functions through order M
in constructing a form

f (x) = β0 +

M∑
m=0

2m−1∑
j=0

βmjψm,j (x) (70)

(with the understanding that ψ0,0 = ψ), a form that in general allows building
of functions that are constant on consecutive intervals of length 1/2M+1. This
form can be fit by any of the various regression methods (especially involving
thresholding/selection, as a typically very large number, 2M+1, of basis func-
tions is employed in form (70)). (See HTF Section 5.9.2 for some discussion of
using the lasso with wavelets.) Large absolute values of coeffi cients βmj encode
scales at which important variation in the value of the index m, and location
in [0, 1] where that variation occurs in the value j/2m. Where (perhaps af-
ter model selection/ thresholding) only a relatively few fitted coeffi cients are
important, the corresponding scales and locations provide an informative and
compact summary of the fit. A nice visual summary of the results of the fit
can be made by plotting for each m (plots arranged vertically, from M through
0, aligned and to the same scale) spikes of length |βmj | pointed in the direction
of sign(βmj) along an "x" axis at positions (say) (j/2m) + 1/2m+1.
In special situations where N = 2K and

xi = i

(
1

2K

)
for i = 1, 2, . . . , 2K

and one uses the Haar basis functions through order K − 1, the fitting of form
(70) is computationally clean, since the vectors ψm,j (x1)

...
ψm,j (xN )


(together with the column vector of 1s) are orthogonal. (So, upon proper
normalization, i.e. division by

√
N = 2K/2, they form an orthonormal basis for

<N .)
The Haar wavelet basis functions are easy to describe and understand. But

they are discontinuous, and from some points of view that is unappealing. Other
sets of wavelet basis functions have been developed that are smooth. The
construction begins with a smooth "mother wavelet" in place of the step function
used above. HTF make some discussion of the smooth "symmlet" wavelet basis
at the end of their Chapter 5.

4.2 p = 1 Piecewise Polynomials and Regression Splines

Continue consideration of the case of a one-dimensional input variable x, and
now K "knots"

ξ1 < ξ2 < · · · < ξK
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and forms for f (x) that are

1. polynomials of orderM (or less) on all intervals (ξj−1, ξj), and (potentially,
at least)

2. have derivatives of some specified order at the knots, and (potentially, at
least)

3. are linear outside (ξ1, ξK).

If we let I1 (x) = I [x < ξ1], for j = 2, . . . ,K let Ij (x) = I [ξj−1 ≤ x < ξj ],
and define IK+1 (x) = I [ξK ≤ x], one can have 1. in the list above using basis
functions

I1 (x) , I2 (x) , . . . , IK+1 (x)

xI1 (x) , xI2 (x) , . . . , xIK+1 (x)

x2I1 (x) , x2I2 (x) , . . . , x2IK+1 (x)

...

xMI1 (x) , xMI2 (x) , . . . , xMIK+1 (x)

Further, one can enforce continuity and differentiability (at the knots) conditions
on a form f (x) =

∑(M+1)(K+1)
m=1 βmhm (x) by enforcing some linear relations

between appropriate ones of the βm. While this is conceptually simple, it is
messy. It is much cleaner to simply begin with a set of basis functions that are
tailored to have the desired continuity/differentiability properties.
A set of M + 1 + K basis functions for piecewise polynomials of degree M

with derivatives of order M − 1 at all knots is easily seen to be

1, x, x2, . . . , xM , (x− ξ1)M+ , (x− ξ2)M+ , . . . , (x− ξK)
M
+

(since the value and first M − 1 derivatives of (x− ξj)M+ at ξj are all 0). The
choice of M = 3 is fairly standard.
Since extrapolation with polynomials typically gets worse with order, it is

common to impose a restriction that outside (ξ1, ξK) a form f (x) be linear. For
the case of M = 3 this can be accomplished by beginning with basis functions
1, x, (x− ξ1)3+ , (x− ξ2)

3
+ , . . . , (x− ξK)

3
+ and imposing restrictions necessary to

force 2nd and 3rd derivatives to the right of ξK to be 0. Notice that (considering
x > ξK)

d2

dx2

α0 + α1x+

K∑
j=1

βj (x− ξj)3+

 = 6

K∑
j=1

βj (x− ξj) (71)

and

d3

dx3

α0 + α1x+

K∑
j=1

βj (x− ξj)3+

 = 6

K∑
j=1

βj (72)
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So, linearity for large x requires (from equation (72)) that
∑K
j=1 βj = 0. Fur-

ther, substituting this into relationship (71) means that linearity also requires
that

∑K
j=1 βjξj = 0. Using the first of these to conclude that βK = −

∑K−1
j=1 βj

and substituting into the second yields

βK−1 = −
K−2∑
j=1

βj

(
ξK − ξj

ξK − ξK−1

)
and then

βK =

K−2∑
j=1

βj

(
ξK − ξj

ξK − ξK−1

)
−
K−2∑
j=1

βj

These then suggest the set of basis functions consisting of 1, x and for j =
1, 2, . . . ,K − 2

(x− ξj)3+ −
(

ξK − ξj
ξK − ξK−1

)
(x− ξK−1)3+ +

(
ξK − ξj

ξK − ξK−1

)
(x− ξK)

3
+ − (x− ξK)

3
+

(73)

= (x− ξj)3+ −
(

ξK − ξj
ξK − ξK−1

)
(x− ξK−1)3+ +

(
ξK−1 − ξj
ξK − ξK−1

)
(x− ξK)

3
+

(These are essentially the basis functions that HTF call their Nj .) Their use
produces so-called "natural" (linear outside (ξ1, ξK)) cubic regression splines.
There are other (harder to motivate, but in the end more pleasing and

computationally more attractive) sets of basis functions for natural polynomial
splines. See the B-spline material at the end of HTF Chapter 5.

4.3 Basis Functions and p-Dimensional Inputs

4.3.1 Multi-Dimensional Regression Splines (Tensor Product Bases)

If p = 2 and the vector of inputs, x, takes values in <2, one might proceed as
follows. If {h11, h12, . . . , h1M1

} is a set of spline basis functions based on x1
and {h21, h22, . . . , h2M2

} is a set of spline basis functions based on x2 one might
consider the set of M1 ·M2 basis functions based on x defined by

gjk (x) = h1j (x1)h2k (x2)

and corresponding forms for regression splines

f (x) =
∑
j,k

βjkgjk (x) (74)

The biggest problem with this potential method is the explosion in the size
of a tensor product basis as p increases. For example, using K knots for cubic
regression splines in each of p dimensions produces (4 +K)

p basis functions
for the p-dimensional problem. Some kind of forward selection algorithm or
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shrinking of coeffi cients will be needed to produce any kind of workable fits
with such large numbers of basis functions. For example, the multivariate
smoothing routines provided in the mgcv R package of Wood allow for quadratic
penalized (ridge regression type) fitting of forms like (74). The following discus-
sion of "MARS" concerns one kind of forward selection algorithm using (data-
dependent) linear regression spline basis functions and products of them for
building predictors

4.3.2 MARS (Multivariate Adaptive Regression Splines)

This is a high-dimensional regression methodology based on use of data-dependent
"hockey-stick" or "hinge" functions (the kind of functions leading to piece-wise
linear regression splines when p = 1) and their products as (data-dependent)
"basis functions." That is, with input space <p consider defining data-dependent
features19 built on the Np pairs of functions

hij1 (x) = (xj − xij)+ and hij2 (x) = (xij − xj)+ (75)

(xij is the jth coordinate of the ith input training vector and both hij1 (x) and
hij2 (x) depend on x only through the jth coordinate of x) portrayed in Figure
22.

Figure 22: Pair of hinge functions.

MARS builds predictors sequentially, making use of these "reflected pairs"
of hinge functions and their products. One version (described in HTF) proceeds
roughly as follows.

1. Identify a pair (75) so that

β0 + β11hij1 (x) + β12hij2 (x)

has the best SSE possible. Call the selected functions

g11 = hij1 and g12 = hij2

and set
f̂1 (x) = β̂0 + β̂11g11 (x) + β̂12g12 (x)

19Notice that in the framework of Section 1.4.5 these functions of the input x are of the
form T (T ,x), NOT simply of the form T (x).
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2. At stage l of the predictor-building process, with predictor

f̂l−1 (x) = β̂0 +

l−1∑
m=1

(
β̂m1gm1 (x) + β̂m2gm2 (x)

)
in hand, consider for addition to the model pairs of functions that are
either of the basic form (75) or of the form

hij1 (x) gm1 (x) and hij2 (x) gm1 (x)

or of the form

hij1 (x) gm2 (x) and hij2 (x) gm2 (x)

for some m < l, subject to the constraint that no xj appears in any
candidate product more than once (maintaining the piece-wise linearity of
sections of the predictor). Additionally, one may decide to put an upper
limit on the order of the products considered for inclusion in the predictor.
The best candidate pair in terms of reducing SSE gets called, say, gl1 and
gl2 and one sets

f̂l (x) = β̂0 +

l∑
m=1

(
β̂m1gm1 (x) + β̂m2gm2 (x)

)
One might pick the complexity parameter l by cross-validation, but the

standard implementation of MARS apparently uses instead a kind of generalized
cross validation error

GCV (l) =

∑N
i=1

(
yi − f̂l (xi)

)2
(

1− M(l)
N

)2
where M (l) is some kind of degrees of freedom figure. One must take account
of both the fitting of the coeffi cients β in this and the fact that knots (values
xij) have been chosen. The HTF recommendation is to use

M (l) = 2l + (2 or 3) · (the number of different knots chosen)

(where presumably the knot count refers to different xij appearing in at least
one gm1 (x) or gm2 (x)).
Other versions of "MARS" algorithms potentially remove the constraint that

no xj appear in any candidate product more than once (eliminating the piece-
wise linearity of sections of the predictor), consider not pairs but single hinge
functions at each stage of feature addition, and/or follow a forward-selection
search for features with a backwards-elimination phase (these guided by signif-
icant "change in SSE" or "F/t test" criteria). All of these variants amount
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to the "special sauce" of a particular MARS implementation set by its de-
signer/programmer. Particular implementations have user-selectable parame-
ters like the maximum number of terms in a forward selection phase, the maxi-
mum order of (pure and mixed) terms considered, the "significance level" used
for guiding forward and backward phases of selection of "features," etc. In
practical application, one should select these parameters via cross-validation,
more or less thinking of whatever choices the developer has made in his or her
implementation as simply defining some fitting/predictor-building "black box."
A routine like the train() function in caret is invaluable in making these
choices.
Figure 23 portrays a simple predictor (of home sales price) of the kind that

a MARS algorithm can produce.

Figure 23: An example of the kind of prediction surface that can be generated
by a MARS algorithm. "Price" varies with two predictors.

5 Smoothing Splines and SEL Prediction

5.1 p = 1 Smoothing Splines

A way of avoiding the direct selection of knots for a regression spline is to
instead, for a smoothing parameter λ > 0, consider the problem of finding (for
a ≤ min {xi} and max {xi} ≤ b)

f̂λ = arg min
functions h with 2 derivatives

(
N∑
i=1

(yi − h (xi))
2

+ λ

∫ b

a

(h′′ (x))
2
dx

)
Amazingly enough, this optimization problem has a solution that can be fairly
simply described. f̂λ is a natural cubic spline with knots at the distinct values
xi in the training set. That is, for a set of (now data-dependent, as the knots
come from the training data) basis functions for such splines

h1, h2, . . . , hN
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(here we’re tacitly assuming that the N values of the input variable in the
training set are all different)

f̂λ (x) =

N∑
j=1

β̂λjhj (x) (76)

where the β̂λj are yet to be identified.
So consider the function

g (x) =

N∑
j=1

θjhj (x) (77)

This has second derivative

g′′ (x) =

N∑
j=1

θjh
′′
j (x)

and so

(g′′ (x))
2

=

N∑
j=1

N∑
l=1

θjθlh
′′
j (x)h′′l (x)

Then, for θ′ = (θ1, θ2, . . . , θN ) and20

Ω
N×N

=

(∫ b

a

h′′j (t)h′′l (t) dt

)

it is the case that ∫ b

a

(g′′ (x))
2
dx = θ′Ωθ

In fact, with the notation
H
N×N

= (hj (xi))

(i indexing rows and j indexing columns) the criterion to be optimized in order
to find f̂λ can be written for functions of the form (77) as

(Y −Hθ)
′
(Y −Hθ) + λθ′Ωθ

and some vector calculus shows that the optimizing θ is

β̂λ =
(
H ′H + λΩ

)−1
H ′Y (78)

which can be thought of as some kind of vector of generalized ridge regression
coeffi cients. This form (78) together with representation (76) of course provides
a smoothed prediction of y for any input x.

20For the set of cubic spline basis functions (73) it it unpleasant but straightforward to find
relatively simple formulas for the entries of Ω. See the exercises for this section for details.
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Corresponding to coeffi cient vector (78) is a vector of smoothed output values

Ŷ λ = H
(
H ′H + λΩ

)−1
H ′Y

and the matrix
Sλ ≡H

(
H ′H + λΩ

)−1
H ′

is called a smoother matrix.
Contrast this to a situation where some fairly small number, p, of fixed basis

functions are employed in a regression context. That is, for basis functions
b1, b2, . . . , bp suppose

B
N×p

= (bj (xi))

Then OLS produces the vector of fitted values

Ŷ = B
(
B′B

)−1
B′Y

and the projection matrix onto the column space ofB, C (B), is PB = B
(
B′B

)−1
B′.

Sλ and PB are bothN×N symmetric non-negative definite matrices. While

PBPB = PB

i.e. PB is idempotent,
SλSλ � Sλ

meaning that Sλ − SλSλ is non-negative definite. PB is of rank p = tr(PB),
while Sλ is of rank N .
In a manner similar to what is done in ridge regression we might define an

"effective degrees of freedom" for Sλ (or for smoothing) as

df (λ) = tr (Sλ) (79)

We proceed to develop motivation and a formula for this quantity and for Ŷ λ.
Notice that for

K =
(
H ′
)−1

ΩH−1

one has

Sλ = H
(
H ′H + λΩ

)−1
H ′

= H
(
H ′
(
I + λH ′−1ΩH

)
H
)−1

H ′

= HH−1
(
I + λH ′−1ΩH

)−1
H ′−1H ′

= (I + λK)
−1 (80)

This is the so-called Reinsch form for Sλ, from whence S−1λ = I + λK.
Some vector calculus shows that Ŷ λ = SλY is a solution to the minimization

problem
minimize
v∈<N

(
(Y − v)

′
(Y − v) + λv′Kv

)
(81)
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so that this matrix K can be thought of as defining a "penalty" in fitting a
smoothed version of Y .
Then, since Sλ is symmetric non-negative definite, it has an eigen decom-

position as

Sλ = UDU ′ =

N∑
j=1

djuju
′
j (82)

where columns of U (the eigenvectors uj) comprise an orthonormal basis for
<N and

D = diag (d1, d2, . . . , dN )

for eigenvalues of Sλ
d1 ≥ d2 ≥ · · · ≥ dN > 0

It turns out to be guaranteed that d1 = d2 = 1.
Consider how the eigenvalues and eigenvectors of Sλ are related to those for

K. An eigenvalue for K, say η, solves

det (K − ηI) = 0

Now

det (K − ηI) = det
(

1

λ
[(I + λK)− (1 + λη) I]

)
So 1+λη must be an eigenvalue of I+λK and 1/ (1 + λη) must be an eigenvalue
of Sλ = (I + λK)

−1. So for some j we must have

dj =
1

1 + λη

and observing that 1/ (1 + λη) is decreasing in η, we may conclude that

dj =
1

1 + ληN−j+1
(83)

for
η1 ≥ η2 ≥ · · · ≥ ηN−2 ≥ ηN−1 = ηN = 0

the eigenvalues ofK (that themselves do not depend upon λ). So, for example,
in light of facts (79), (82), and (83), the smoothing effective degrees of freedom
are

df (λ) = tr (Sλ) =

N∑
j=1

dj = 2 +

N−2∑
j=1

1

1 + ληj

which is clearly decreasing in λ (with minimum value 2 in light of the fact that
Sλ has two eigenvalues that are 1).
Further, consider uj , the eigenvector of Sλ corresponding to eigenvalue dj .

Sλuj = djuj so that

uj = S−1λ djuj = (I + λK) djuj
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so that
uj = djuj + djλKuj

and thus

Kuj =

(
1− dj
λdj

)
uj = ηN−j+1uj

That is, uj is an eigenvector of K corresponding to the (N − j + 1)st largest
eigenvalue. That is, for all λ the eigenvectors of Sλ are eigenvectors of K and
thus do not depend upon λ.
Then, for any λ

Ŷ λ = SλY =

 N∑
j=1

djuju
′
j

Y
=

N∑
j=1

dj 〈uj ,Y 〉uj

= 〈u1,Y 〉u1 + 〈u2,Y 〉u2 +

N∑
j=3

〈uj ,Y 〉
1 + ληN−j+1

uj (84)

and we see that Ŷ λ is a shrunken version of Y (that progresses from Y to the
projection of Y onto the span of {u1,u2} as λ runs from 0 to∞)21 . The larger
is λ, the more severe the shrinking overall. Further, the larger is j, the smaller
is dj and the more severe is the shrinking in the uj direction. (The unpenalized
directions u1 and u2 have no associated shrinking.) In the context of cubic
smoothing splines, large j correspond to "wiggly" (as a functions of coordinate
i or value of the input xi) uj , and the prescription (84) calls for suppression of
"wiggly" components of Y .
Further, since Ŷ λ = Hβ̂λ and H is nonsingular, as λ runs from 0 to ∞, β̂λ

runs from H−1Y to H−1 (〈u1,Y 〉u1 + 〈u2,Y 〉u2). And there is "shrinking"
enforced on β̂λ in the sense that the quadratic form β̂

′
λΩβ̂λ must be non-

increasing in λ. (If not, the fact that
∥∥∥Y − Ŷ λ

∥∥∥2 increases in λ would produce
a contradiction.)
Notice that large j correspond to early/large eigenvalues of the penalty ma-

trix K in (81). Letting u∗j = uN−j+1 so that

U∗ = (uN ,uN−1, . . . ,u1)

= (u∗1,u
∗
2, . . . ,u

∗
N )

the eigen decomposition of K is

K = U∗diag (η1, η2, . . . , ηN )U∗′

21 It is possible to argue that the span of {u1,u2} is the set of vectors of the form c1 + dx,
as is consistent with the integral penalty in original function optimization problem.

96



and criterion (81) can be written as

minimize
v∈<N

(
(Y − v)

′
(Y − v) + λv′U∗diag (η1, η2, . . . , ηN )U∗′v

)
or equivalently as

minimize
v∈<N

(Y − v)
′
(Y − v) + λ

N−2∑
j=1

ηj
〈
u∗j ,v

〉2 (85)

(since ηN−1 = ηN = 0) and we see that eigenvalues of K function as penalty
coeffi cients applied to the N orthogonal components of v =

∑N
j=1

〈
u∗j ,v

〉
u∗j in

the choice of optimizing v. From this point of view, the uj (or u∗j ) provide
the natural alternative (to the columns of H) basis (for <N ) for representing
or approximating Y , and the last equality in display (84) provides an explicit
form for the optimizing smoothed vector Ŷ λ.
In this development,K has had a specific meaning derived from theH andΩ

matrices connected specifically with smoothing splines and the particular values
of x in the training dataset. But in the end, an interesting possibility brought
up by the whole development is that of forgetting the origins (fromK) of the ηj
and uj and beginning with any interesting/intuitively appealing orthonormal
basis {uj} and set of non-negative penalties {ηj} for use in minimization (85).
Working backwards through relationships (84) and (83) one is then led to the
corresponding smoothed vector Ŷ λ and smoothing matrix Sλ. (More detail on
this matter is in Section 5.3.)
It is also worth remarking that since Ŷ λ = SλY the rows of Sλ pro-

vide weights to be applied to the elements of Y in order to produce predic-
tions/smoothed values corresponding to Y . These can for each i be thought
of as defining a corresponding "equivalent kernel" (for an appropriate "kernel-
weighted average" of the training output values as discussed in Section 6.1).
(See Figure 5.8 of HTF2 in this regard.)

5.2 Multi-Dimensional Smoothing Splines

If p = 2 and the vector of inputs, x, takes values in <2, one might propose to
seek

f̂λ = arg min
functions h with 2 derivatives

(
N∑
i=1

(yi − h (xi))
2

+ λJ [h]

)
for

J [h] ≡
∫∫
<2

(
∂2h

∂x21

)2
+ 2

(
∂2h

∂x1∂x2

)2
+

(
∂2h

∂x22

)2
dx1dx2

An optimizing f̂λ : <2 → < can be identified and is called a "thin plate spline."
As λ → 0, f̂λ becomes an interpolator, as λ → ∞ it defines the OLS plane
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through the data in 3-space. In general, it can be shown to be of the form

fλ (x) = β0λ + β′λ x+

N∑
i=1

αiλgi (x) (86)

where gi (x) = η (‖x− xi‖) for η (z) = z2 ln z2. The gi (x) are "radial basis
functions" (radially symmetric basis functions) and fitting is accomplished much
as for the p = 1 case. The form (86) is plugged into the optimization criterion
and a discrete penalized least squares problem emerges (after taking account of
some linear constraints that are required to keep J [fλ] < ∞). HTF seem to
indicate that in order to keep computations from exploding with N , it usually
suffi ces to replace the N functions gi (x) in form (86) with K � N functions
g∗i (x) = η (‖x− x∗i ‖) for K potential input vectors x∗i placed on a rectangular
grid covering the convex hull of the N training data input vectors xi.

For large p, one might simply declare that attention is going to be limited
to predictors of some restricted form, and for h in that restricted class, seek to
optimize

N∑
i=1

(yi − h (xi))
2

+ λJ [h]

for J [h] some appropriate penalty on h intended to regularize/restrict its wig-
gling. For example, one might assume that a form

g (x) =

p∑
j=1

gj (xj)

will be used and set

J [g] =

p∑
j=1

∫ (
g′′j (x)

)2
dx

and be led to additive splines.
Or, one might assume that

g (x) =

p∑
j=1

gj (xj) +
∑
j,k

gjk (xj , xk) (87)

and invent an appropriate penalty function. It seems like a sum of 1-d smooth-
ing spline penalties on the gj and 2-d thin plate spline penalties on the gjk is the
most obvious starting point. Details of fitting are a bit murky (though I am sure
that they can be found in book on generalized additive models). Presumably
one cycles through the summands in display (87) iteratively fitting functions to
sets of residuals defined by the original yi minus the sums of all other current
versions of the components until some convergence criterion is satisfied. Func-
tion (87) has a kind of "main effects plus 2-factor interactions" form, but it is
(at least in theory) possible to also consider higher order terms in this kind of
expansion.
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5.3 An Abstraction of the Smoothing Spline Material and
Penalized Fitting in <N

In abstraction of the smoothing spline development, suppose that {uj} is a
set of M ≤ N orthonormal N -vectors, λ ≥ 0, ηj ≥ 0 for j = 1, 2, . . . ,M, and
consider the optimization problem

minimize
v∈ span{uj}

(Y − v)
′
(Y − v) + λ

M∑
j=1

ηj 〈uj ,v〉2


For v =
∑M
j=1 cjuj ∈ span{uj}, the penalty is λ

∑M
j=1 ηj 〈uj ,v〉

2
= λ

∑M
j=1 ηjc

2
j

and in this penalty, ληj is a multiplier of the squared length of the component
of v in the direction of uj . The optimization criterion is then

(Y − v)
′
(Y − v) + λ

M∑
j=1

ηj 〈uj ,v〉2 =

M∑
j=1

(〈uj ,Y 〉 − cj)2 + λ

M∑
j=1

ηjc
2
j

and it is then easy to see (via simple calculus) that

coptj =
〈uj ,Y 〉
1 + ληj

i.e.

Ŷ = vopt =

M∑
j=1

〈uj ,Y 〉
1 + ληj

uj

From this it’s clear how the penalty structure dictates optimally shrinking the
components of the projection of Y onto span{uj}.
It is further worth noting that for a given set of penalty coeffi cients, Ŷ can

be represented as SY for

S =

M∑
j=1

djuju
′
j = Udiag

(
1

1 + λη1
, . . . ,

1

1 + ληM

)
U ′

for U = (u1,u2, . . . ,uM ). Then it’s easy to see that smoother matrix S is a
rank M matrix for which Ŷ = SY .
One context in which this material might find immediate application is where

some set of basis functions {hj} are increasingly "wiggly" with increasing j and
the vectors uj come from applying the Gram-Schmidt process to the vectors

hj = (hj (x1) , . . . , hj (xN ))
′

In this context, it would be very natural to penalize the later uj more severely
than the early ones.
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5.4 Graph-Based Penalized Fitting/Smoothing (and Semi-
Supervised Learning)

Another interesting smoothing methodology related to the material of the three
previous sections concerns use of fitting penalties based on the graph Lapla-
cians introduced in Section 2.4.3.22 Consider then N complete data cases
(x1, y1) , . . . , (xN , yN ) and M ≥ 0 additional data cases where only inputs
xN+1, . . . ,xN+M are available. There is no necessity here that M > 0, but it
can be so in the event that predictions are desired at xN+1, . . . ,xN+M whose
values might not be in the training set. Where there are M > 0 genuine "unla-
beled cases" whose inputs are assumed to come from the same mechanism as the
inputs x1, . . . ,xN and might be used to more or less "fill in" the relevant part
of the input space not covered by the complete/labeled data cases, the termi-
nology semi-supervised learning is sometimes used to describe the building
of a predictor for y at all N + M input vectors. The case M = 1 might be
used to simply make a single prediction at a single input not exactly seen in a
"usual" training set of N complete data pairs.
Suppose that following the development of Section 2.4.3 one can make an

adjacency matrix based on the N +M input vectors,

S = (sij)i=1,...,N+M
j=1,...,N+M

=

 SL
N×N

SLU
N×M

SUL
M×N

SU
M×M


and corresponding Laplacian and symmetric normalized Laplacian, respectively

L =

 LL
N×N

LLU
N×M

LUL
M×N

LU
M×M

 and L∗ =

 L∗L
N×N

L∗LU
N×M

L∗UL
M×N

L∗U
M×M


Then with

Y
(N+M)×1

=

 Y L
N×1
Y U
M×1


what one might wish to do is produce a vector of smoothed/fitted values Ŷ

(N+M)×1
such that entries corresponding to input vectors with large adjacencies tend to
be alike. This is possible in way highly reminiscent of the material in Sections
5.1 and 5.3.
For v ∈ <N+M written as

v
(N+M)×1

=

 vL
N×1
vU
M×1


22The material here is adapted from "Graph-Based Semi-Spervised Learning with BIG

Data" by Banergee, Culp, Ryan, and Michailidis, that appeard in Research on Applied Cy-
bernetics and System Science in 2017.
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consider the optimization problem in <N+M

minimize
v∈<N+M

(
(Y L − vL)

′
(Y L − vL) + λv′Lv

)
(88)

for some λ > 0 (or the same with L∗ replacing L in the quadratic penalty term).
The developments (52) and (53) of Section 2.4.3 show that upon expanding
v in terms of the N + M (orthonormal) eigenvectors of L (or L∗) it follows
that components of v that are multiples of late eigenvectors (ones with small
eigenvalues)

1. have similar entries for cases with large adjacencies, and

2. are relatively lightly penalized in the minimization.

This strongly suggests that solutions to the optimization problem (88) will pro-
vide smoothed prediction vectors Ŷ where entries with corresponding inputs
with large adjacencies are similar.
Recent work of Culp and Ryan provides theory, methods, and software for

solving the problem (88) and many nice generalizations of it (including consid-
eration of losses other than SEL that produce methods for classification prob-
lems). For purposes of exposition here, we will provide the explicit solution
that is available for the SEL problem. It turns out that the problem (88) and
generalizations of it separate nicely into two parts. That is

Ŷ
opt
U = −L−1U LUL Ŷ

opt
L (89)

(or the same with L∗s replacing Ls) where Ŷ
opt
L = vL solving

minimize
vL∈<N

(
(Y L − vL)

′
(Y L − vL) + λv′LL̃LvL

)
(90)

for L̃L = LL−LLUL−1U LUL (or, again, the same with L
∗s replacing Ls). (Gen-

eralizations of the development here replace SSE in displays (88) and (90) with
other losses, but the form (89) is unchanged.) But the problem (90) is familiar
and its solution a simple consequence of vector calculus

Ŷ
opt
L =

(
I + λL̃L

)−1
Y L

This is exactly parallel to the displays (80) and (81) and the discussion around

them.
(
I + λL̃L

)−1
(and its starred version) is a smoother/shrinker matrix.

Further, the matrix −L−1U LUL in display (89) and its starred version are sto-
chastic matrices and entries of Ŷ

opt
U are averages of the elements of Ŷ

opt
L .
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6 Kernel and Local Regression SmoothingMeth-
ods and SEL Prediction

The central idea of this material is that when finding f̂ (x0) one might weight
points in the training set according to how close they are to x0, do some kind
of fitting around x0, and ultimately read off the value of the fit at x0.

6.1 One-dimensional Kernel and Local Regression Smoothers

For the time being, suppose that x takes values in [0, 1]. Invent weighting
schemes for points in the training set by defining a (usually, symmetric about
0) non-negative, real-valued function D (t) that is non-increasing for t ≥ 0 and
non-decreasing for t ≤ 0. Often D (t) is taken to have value 0 unless |t| ≤ 1.
Then, a kernel function23 is

Kλ (x, x0) = D

(
x− x0
λ

)
(91)

where λ is a "bandwidth" parameter that controls the rate at which weights
drop off as one moves away from x0 (and indeed in the case that D (t) = 0 for
|t| > 1, how far one moves away from x0 before no weight is assigned). Common
choices for D are

1. the Epanechnikov quadratic kernel, D (t) = 3
4

(
1− t2

)
I [|t| ≤ 1],

2. the "tri-cube" kernel, D (t) =
(

1− |t|3
)3
I [|t| ≤ 1], and

3. the standard normal density, D (t) = φ (t).

These three are pictured in Figure 24.
Using weights (91) to make a weighted average of training responses, one

arrives at the Nadaraya-Watson kernel-weighted prediction at x0

f̂λ (x0) =

∑N
i=1Kλ (x0, xi) yi∑N
i=1Kλ (x0, xi)

(92)

This typically smooths training outputs yi in a more pleasing way than does
a k-nearest neighbor average, but it has obvious problems at the ends of the
interval [0, 1] and at places in the interior of the interval where training data are
dense to one side of x0 and sparse to the other, if the target E[y|x = z] has non-
zero derivative at z = x0. For example, at x0 = 1 only xi ≤ 1 get weight, and
if E[y|x = z] is decreasing at z = x0 = 1, f̂λ (1) will be positively biased. That
is, with usual symmetric kernels, predictor (92) will fail to adequately follow an
obvious trend at 0 or 1 (or at any point between where there is a sharp change
in the density of input values in the training set).

23This is again a potentially different usage of the word "kernel" than that in Section 1.4.3
and no non-negative definiteness of the function is needed or assumed.
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Figure 24: Three standard choices of D (t): Epanechnikov quadratic kernel
(blue), tricube (black), and standard normal density (red).

A way to address this problem with the Nadaraya-Watson predictor is to
replace the locally-fitted constant with a locally-fitted line. That is, at x0 one
might choose α (x0) and β (x0) to solve the optimization problem

minimize
α and β

N∑
i=1

Kλ (x0, xi) (yi − (α+ βxi))
2 (93)

and then employ the prediction

f̂λ (x0) = α (x0) + β (x0)x0 (94)

Now the weighted least squares problem (93) has an explicit solution. Let

B
N×2

=


1 x1
1 x2
...

...
1 xN


and take

W (x0)
N×N

= diag (Kλ (x0, x1) , . . . ,Kλ (x0, xN ))

then predictor (94) is

f̂λ (x0) = (1, x0)
(
B′W (x0)B

)−1
B′W (x0)Y (95)

= l′ (x0)Y

for the 1 × N vector l′ (x0) = (1, x0)
(
B′W (x0)B

)−1
B′W (x0). It is thus

obvious that locally weighted linear regression is (an albeit x0-dependent) lin-
ear operation on the vector of outputs. The weights in l′ (x0) combine the
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original kernel values and the least squares fitting operation to produce a kind
of "equivalent kernel" (for a Nadaraya-Watson type weighted average).
Recall that for smoothing splines, smoothed values are

Ŷ λ = SλY

where the parameter λ is the penalty weight, and

df (λ) = tr (Sλ)

We may do something parallel in the present context. We may take

Lλ
N×N

=


l′ (x1)
l′ (x2)
...

l′ (xN )


where now the parameter λ is the bandwidth, write

Ŷ λ = LλY

and define
df (λ) = tr (Lλ)

HTF suggest that matching degrees of freedom for a smoothing spline and a
kernel smoother produces very similar equivalent kernels, smoothers, and pre-
dictions.
There is a famous theorem of Silverman that adds technical credence to this

notion. Roughly the theorem says that for large N , if in the case p = 1 the
inputs x1, x2, . . . , xN are iid with density p (x) on [a, b], λ is neither too big nor
too small,

DS (u) =
1

2
exp

(
− |u|√

2

)
sin

(
|u|√

2
+
π

4

)

γ (x) =

(
λ

Np (x)

)1/4
and

Gλ (z, x) =
1

γ (x) p (x)
DS

(
z − x
γ (x)

)
then for xi not too close to either a or b,

(Sλ)ij ≈
1

N
Gλ (xi, xj)

(in some appropriate probabilistic sense) and the smoother matrix for cubic
spline smoothing has entries like those that would come from an appropriate
kernel smoothing.
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6.2 Local Regression Smoothing in p Dimensions

A direct generalization of 1-dimensional local regression smoothing to p dimen-
sions might go roughly as follows. For D as before, and x ∈ <p, one might
set

Kλ (x0,x) = D

(
‖x− x0‖

λ

)
(96)

and fit linear forms locally by choosing α (x0) ∈ < and β (x0) ∈ <p to solve the
optimization problem

minimize
α and β

N∑
i=1

Kλ (x0,xi)
(
yi −

(
α+ β′xi

))2
and predicting as

f̂λ (x0) = α (x0) + β′ (x0)x0

This seems typically to be done only after standardizing the coordinates of x
and can be effective as longs as N is not too small and p is not more than 2
or 3. However for p > 3, the curse of dimensionality comes into play and N
points usually just aren’t dense enough in p-space to make direct use of kernel
smoothing effective. If the method is going to be successful in <p it will need
to be applied under appropriate structure assumptions.
One way to apply additional structure to the p-dimensional kernel smoothing

problem is to essentially reduce input variable dimension by replacing the kernel
(96) with the "structured kernel"

Kλ,A (x0,x) = D


√

(x− x0)′A (x− x0)
λ


for an appropriate non-negative definite matrixA. For the eigen decomposition
of A,

A = V DV ′

write

(x− x0)′A (x− x0) =
(
D

1
2V ′ (x− x0)

)′ (
D

1
2V ′ (x− x0)

)
This amounts to using not x and <p distance from x to x0 to define weights,
but rather D

1
2V ′x and <p distance from D

1
2V ′x to D

1
2V ′x0. In the event

that some entries of D are 0 (or are nearly so), this basically reduces dimension
from p to the number of large eigenvalues of A and defines weights in a space
of that dimension (spanned by eigenvectors corresponding to non-zero eigenval-
ues) where the curse of dimensionality may not preclude effective use of kernel
smoothing. The "trick" is, of course, identifying the right directions into which
to project. (Searching for such directions is part of the Friedman "projection
pursuit" ideas discussed below.)
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7 High-Dimensional Use of Low-Dimensional
Smoothers and SEL Prediction

There are several ways that have been suggested for making use of fairly low-
dimensional (and thus, potentially effective) smoothing in large p problems.
One of them is the "structured kernels" idea just discussed. Two more follow.

7.1 Structured Regression Functions

7.1.1 Additive Models

A way to apply structure to the p-dimensional smoothing problem is through
assumptions on the form of the predictor fit. For example, one might assume
additivity in a form

f (x) = α+

p∑
j=1

gj (xj) (97)

and try to do fitting of the p functions gj and constant α.
One more or less ad hoc method of fitting forms like form (97) is the so-called

"back-fitting algorithm." That is to (generalize form (97) slightly and) fit
(under SEL)

f (x) = α+

L∑
l=1

gl
(
xl
)

(98)

for xl some part of x, one might set α̂ = 1
N

∑N
i=1 yi, and then cycle through

l = 1, 2, . . . , L, 1, 2, . . .

1. fitting via some appropriate (often linear) operation (e.g., spline or kernel
smoothing)

gl
(
xl
)
to "data"

{(
xli, y

l
i

)}
i=1,2,...,N

for

yli = yi −

α̂+
∑
m 6=l

gm (xmi )


where the gm are the current versions of the fitted summands,

2. setting

gl = the newly fitted version

− the sample mean of this newly fitted version across all xli

(in theory this is not necessary, but it is here to prevent numerical/round-
off errors from causing the gm to drift up and down by additive constants
summing to 0 across m),

3. iterating until convergence to, say, f̂ (x).
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A more principled SEL fitting methodology for additive forms like that in
display (98) (e.g. implemented by Wood in his mgcf R package) is the simulta-
neous fitting of α and all the functions gl via penalized least squares. That is,
using an appropriate set of basis functions for smooth functions of xl (often a
tensor product basis in the event that the dimension of xl is more than 1) each
gl might be represented as a linear combination of those basis functions. Then
form (98) is in fact a constant plus a linear combination of basis functions. So
upon adopting a quadratic penalty for the coeffi cients, one has a kind of ridge
regression problem and explicit forms for all fitted coeffi cients and α̂. The
practical details of making the various bases and picking ridge parameters, etc.
are not trivial, but the basic idea is clear.
The simplest version of this line of development, based on form (97), might

be termed fitting of a "main effects model." But the approach might as well
be applied to fit a "main effects and two factor interactions model," using some
gls that are functions of only one coordinate of x and others that depend upon
only two coordinates of the input vector. One may mix types of predictors
(continuous, categorical) and types of functions of them in the additive form
to produce all sorts of interesting models (including semi-parametric ones and
ones with low order interactions).

7.1.2 Other Structured Regression Forms

Another possibility for introducing structure assumptions and making use of
low-dimensional smoothing in a large p situation, is by making strong global
assumptions on the forms of the influence of some input variables on the output,
but allowing parameters of those forms to vary in a flexible fashion with the
values of some small number of coordinates of x. For sake of example, suppose
that p = 4. One might consider predictor forms

f (x) = α (x3, x4) + β1 (x3, x4)x1 + β2 (x3, x4)x2

That is, one might assume that for fixed (x3, x4), the form of the predictor is
linear in (x1, x2), but that the coeffi cients of that form may change in a flexible
way with (x3, x4). Fitting might then be approached by locally weighted least
squares, with only (x3, x4) involved in the setting of the weights. That is, one
might for each (x30, x40), minimize over choices of α (x30, x40) , β1 (x30, x40) and
β2 (x30, x40) the weighted sum of squares

N∑
i=1

Kλ ((x30, x40) , (x3i, x4i)) (yi − (α (x30, x40) + β1 (x30, x40)x1i + β2 (x30, x40)x2i))
2

and then employ the predictor

f̂ (x0) = α̂ (x30, x40) + β̂1 (x30, x40)x10 + β̂2 (x30, x40)x20

This kind of device keeps the dimension of the space where one is doing smooth-
ing down to something manageable. But note that nothing here does any
thresholding or automatic variable selection.

107



7.2 Projection Pursuit Regression

For w1,w2, . . . ,wM unit p-vectors of parameters, we might consider as predic-
tors fitted versions of the form

f (x) =

M∑
m=1

gm (w′mx) (99)

This is an additive form in the derived variables vm = w′mx. The functions gm
and the directions wm are to be fit from the training data. The M = 1 case of
this form is the "single index model" of econometrics.
How does one fit a predictor of this form (99)? Consider first the M = 1

case. Given w, there are pairs (vi, yi) for vi = w′xi and a 1-dimensional
smoothing method can be used to estimate g. On the other hand, given g, one
might seek to optimize w via an iterative search. A Gauss-Newton algorithm
can be based on the first order Taylor approximation

g (w′xi) ≈ g (w′oldxi) + g′ (w′oldxi) (w′ −w′old)xi

so that
N∑
i=1

(yi − g (w′xi))
2 ≈

N∑
i=1

(g′ (w′oldxi))
2
((
w′oldxi +

yi − g (w′oldxi)

g′ (w′oldxi)

)
−w′xi

)2
Thenwold may be updated tow using the closed form for weighted (by (g′ (w′oldxi))

2)
no-intercept regression of(

w′oldxi +
yi − g (w′oldxi)

g′ (w′oldxi)

)
on xi. (Presumably one must normalize the updatedw in order to preserve unit
length property of thew in order to maintain a stable scaling in the fitting.) The
g and w steps are iterated until convergence. Note that in the case where cubic
smoothing spline smoothing is used in projection pursuit, g′ will be evaluated
as some explicit quadratic and in the case of locally weighted linear smoothing,
form (95) will need to be differentiated in order to evaluate the derivative g′.

When M > 1, terms gm (w′mx) are added to a sum of such in a forward
stage-wise fashion. HTF provide some discussion of details like readjusting
previous gs (and perhaps ws) upon adding gm (w′mx) to a fit, and the choice of
M .

8 Highly Flexible Non-Linear Parametric Pre-
diction Methods

8.1 Neural Network Regression

A multi-layer feed-forward neural network is a nonlinear map of x ∈ <p to one
or more outputs through the use of non-linear functions of linear combinations
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of non-linear functions of linear combinations of ... non-linear functions of linear
combinations of coordinates of x. Figure 25 is a network diagram representa-
tion of a toy single hidden layer feed-forward neural net with 3 inputs, 2 hidden
nodes, and 2 outputs.24 The constants x0 = 1 and z0 = 1 allow for "bi-
ases" (i.e. constant terms) in the linear combinations (technically making them
"affi ne" transformations rather than linear ones). The α and β parameters are
sometimes called "weights."

Figure 25: A Network Diagram Representation of a Single Hidden Layer Feed-
foward Neural Net With 3 Inputs, 2 Hidden Nodes and 2 Ouputs.

This diagram stands for a function of x defined by setting

z1 = σ (α01 · 1 + α11x1 + α21x2 + α31x3)

z2 = σ (α02 · 1 + α12x1 + α22x2 + α32x3)

and then

y1 = g1 (β01 · 1 + β11z1 + β21z2, β02 · 1 + β12z1 + β22z2)

y2 = g2 (β01 · 1 + β11z1 + β21z2, β02 · 1 + β12z1 + β22z2)

In SEL/regression contexts, identity functions of a single one of the arguments
are common and natural for the functions g.
Originally, the most common choice of functional form σ (the so-called "acti-

vation function") at hidden nodes was the (sigmoidal-shaped) logistic function25

σ (u) =
1

1 + exp (−u)

24Of course, much more complicated networks are possible, particularly ones with multiple
hidden layers and many nodes on all layers.
25Other functions with similar shapes, like the inverse standard normal cdf, were also used.

109



or the (completely equivalent in this context26) hyperbolic tangent function

σ (u) = tanh (u) =
exp (u)− exp (−u)

exp (u) + exp (−u)

These functions are differentiable at u = 0, so that for small αs the functions
of x entering the gs in a single hidden layer network are nearly linear. For large
αs the functions are nearly step functions. In light of the latter, it is not
surprising that there are universal approximation theorems that guarantee that
any continuous function on a compact subset of <p can be approximated to any
degree of fidelity with a single layer feed-forward neural net with enough nodes
in the hidden layer. This is both a blessing and a curse. It promises that
these forms are quite flexible It also promises that there must be both over-
fitting and identifiability issues inherent in their use (the latter in addition to the
identifiability issues already inherent in the symmetric nature of the functional
forms assumed for the predictors).
More recently, sigmoidal forms for the activation function have declined in

popularity. Instead, the hinge or positive part function

σ (u) = max (u, 0) = u+

is often used. In common parlance, this makes the hidden nodes "rectified
linear units" (ReLUs). Note that this choice makes functions of x entering an
output layer piece-wise linear and continuous (not at all an unreasonable form).

8.2 Neural Network Classification

In K-class classification problems, it is typical to use K output nodes and for
w = (w1, w2, . . . , wK) the vector of linear combinations of outputs from the
final hidden layer, compute the outputs not simply using a single entry of w for
each, but rather using all entries. That is, it is typical to set K outputs to be

gk (w) =
exp (wk)
K∑
l=1

exp (wl)

(100)

This vector function of (vector) w is usually referred to as the "softmax" func-
tion, and produces a probability vector as output. Its entries serve as estimates
of class probabilities for the given vector of inputs. The 0-1 loss classifier
corresponding to this set of estimated class probabilities is then

f̂ (x) = arg max
k

gk

(where it is understood that the kth probability, gk, depends upon the input
x through the neural net compositions of functions and the final use of the
softmax function).

26This is because tanh (u) = 2
(

1
1+exp(−2u)

)
− 1.
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8.3 Fitting Neural Networks

8.3.1 The Back-Propagation Algorithm

The most common fitting algorithm for neural networks is something called the
"back-propagation algorithm" or the "delta rule." It is simply a gradient descent
algorithm for the entire set of weights involved in making the outputs (in the
simple case illustrated in Figure 25, the αs and βs). Rather than labor through
the nasty notational issues required to completely detail such an algorithm, we
will here only lay out the heart of what is needed.

For a training set of size N , loss L
(
f̂ (xi) , yi

)
incurred for input case i when

the K predictions f̂k (xi) are made (corresponding to the K output nodes) and
a sum of such losses is to be minimized, if one can find the partial derivatives of
the coordinates of f̂ (x) with respect to the weights, the chain rule will give the
partials of the total loss and allow iterative search in the direction of a negative
gradient of the total loss. So we begin with description of how to find partials
for f̂k (x), a coordinate of the fitted output vector.
Consider a neural network with H layers of hidden nodes indexed by h =

1, 2, . . . ,H beginning with the layer immediately before the output layer and
proceeding (right to left in a diagram like Figure 25) to the one that is built
from linear combinations of the coordinates of x. We’ll use the notation mh

for the number of nodes in layer h, including a node representing the "bias"
input 1 (represented by x0 = 1 and z0 = 1 in Figure 25). For a real-valued
activation function of a single real variable σ, define a vector-valued function
σm : <m → <m by

σm (u1, u2, . . . , um) = (σ (u1) , σ (u2) , . . . , σ (um))

In what follows (for purposes of reducing notational clutter) we will abuse nota-
tion somewhat and not subscript σm, but rather write only σ, leaving it to the
reader to recall that σ outputs vectors of the same dimension as its argument.
And it will be convenient to presume that both the input and output of a σ are
row vectors.
Then for AH a (p+ 1) × (mH − 1) matrix of (weight) parameters we can

represent the relationship between the input x and vector of values (say zH) in
the last hidden layer by

z′H =
(

1,σ
(

(1,x′)AH
))

Next, for AH−1 an mH × (mH−1 − 1) matrix of parameters we may represent
the relationship between the vectors of values in the last and next to last hidden
layers by

z′H−1 =
(

1,σ
(
z′HA

H−1
))

and so on to the h = 1 case of (Ah an mh+1 × (mh − 1) matrix of parameters)

z′h =
(

1,σ
(
z′h+1A

h
))

(101)
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Then for A0 an m1 × K matrix of parameters and gk a function of K real
variables, the kth coordinate of the output is

gk
(
z′1A

0
)

(102)

This series of relationships allows (via what is known as a "forward pass"
through them) the computation of zs and predictions for a fixed set of coeffi -
cients collected in the As and an input vector x. Then partial derivatives of
the kth coordinate of the response (at that input and set of coeffi cients) can be
found via the "backward pass" based on the K partials of gk, the derivative of
σ, the recursions above, and the results of the forward pass.
For example, for g(l)k the partial of the function gk with respect to its lth

entry, the partial derivative of the kth coordinate of the prediction with respect
to the (i, j) entry of A0 is from relationship (102) and the chain rule

g
(j)
k

(
z′1A

0
)
· z1i

Further, since using form (102) and the h = 1 version of form (101) the kth
coordinate of the prediction is

gk
((

1,σ
(
z′2A

1
))
A0
)

writing a1ij for the (i, j) entry of A1, the chain rule implies that (with A0
l the

lth column of A0) the partial derivative of the kth coordinate of the prediction
with respect to a1ij is

K∑
l=1

g
(l)
k

((
1,σ

(
z′2A

1
))
A0
) ∂

∂a1ij

((
1,σ

(
z′2A

1
))
A0
)
l

=

K∑
l=1

g
(l)
k

((
1,σ

(
z′2A

1
))
A0
) ∂

∂a1ij

((
1,σ

(
z′2A

1
))
A0
l

)
=

K∑
l=1

g
(l)
k

((
1,σ

(
z′2A

1
))
A0
) K∑
k=1

a0kl
∂

∂a1ij

(
1,σ

(
z′2A

1
))
k

=

K∑
l=1

g
(l)
k

((
1,σ

(
z′2A

1
))
A0
)
a0jl

∂

∂a1ij
σ
(
z′2A

1
j

)
=

K∑
l=1

g
(l)
k

((
1,σ

(
z′2A

1
))
A0
)
σ′
(
z′2A

1
j

)
a0jlz2i

"and so on" for other ŷks and ahijs.
In general one is faced with the functional form for the kth coordinate of the

output

gk

((
1,σ

((
1,σ

(
· · ·

(
1,σ

((
1,σ

(
(1,x′)AH

))
AH−1

))
· · ·A2

))
A1
))
A0
)
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made by successive compositions using the activation function and linear com-

binations with coeffi cients in the matrices Ah, from which partials
∂ŷk
∂ahij

are

obtainable in the style above, by repeatedly using the chain rule. No doubt
some appropriate use of vector calculus and corresponding notation could im-
prove the looks of these expressions and recursions can be developed, but what
is needed should be clear. Further, in many contexts numerical approximation
of these partials may be the most direct and effi cient means of obtaining them.

Then for loss L
(
f̂ , y

)
let

Lk

(
f̂ , y

)
=

∂

∂f̂k
L
(
f̂ , y

)
For a an element of one of the Ah matrices, the partial derivative of the contri-
bution of case i to a total loss with respect to it is

K∑
k=1

Lk

(
f̂ (xi) , yi

) ∂

∂a
gk
(
z′1 (xi)A

0
)

(for z1 (xi) the set of values from the final hidden nodes and partials found as
above) and the partial derivative of the total loss with respect to it is

D (a) =

N∑
i=1

K∑
k=1

Lk

(
f̂ (xi) , yi

) ∂

∂a
gk
(
z′1 (xi)A

0
)

The gradient of the total loss as a function of the matrices of weights then has
entries D (a) and an iterative search to optimize total loss with a current set of
iterates acurrent can produce new iterates

anew = acurrent − γD (acurrent) (103)

for some "learning rate" γ > 0.
Of course, in SEL/univariate regression contexts, it is common to haveK = 1

and take L
(
f̂ , y
)

=
(
f̂ − y

)2
. In K-class classification models, it seems most

common to use aK-dimensional output ĝ =
(
g1
(
z′1A

0
)
, g2
(
z′1A

0
)
, . . . , gK

(
z′1A

0
))

with the "softmax" gk as defined in display (100) and to employ the cross-
entropy loss

L (ĝ, y) = −
K∑
k=1

I [y = k] ln gk (x)

There are various possibilities for regularization of the ill-posed fitting prob-
lem for neural nets, ranging from the fairly formal and rational to the very
informal and ad hoc. One possibility is to employ "stochastic gradient de-
scent" and newly choose a random subset of the training set for use at each
iteration of fitting. (It is popular to even go so far in this regard as to employ
only a single case at each iteration.) Another common approach is to simply
use an iterative fitting algorithm and "stop it before it converges." We proceed
to briefly discuss more formal regularization.
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8.3.2 Formal Regularization of Fitting

Suppose that the various coordinates of the input vectors in the training set
have been standardized and one wants to regularize the fitting of a neural net.
One possible way of proceeding is to define a penalty function like

J (A) =

H∑
h=0

∑
i,j

(
ahij
)2

(104)

for A standing for the entire set of weights in A0,A1, . . . ,AH (it is not ab-
solutely clear whether one really wants to include the weights on the "bias"
terms in the neural net sums in (104)) and seek not to partially optimize the

total training set loss
∑N
i=1 L

(
f̂A (xi) , yi

)
but rather to fully optimize

N∑
i=1

L
(
f̂A (xi) , yi

)
+ λJ (A) (105)

for a λ > 0. By modifying the recursion (103) to

anew = acurrent − γ (D (acurrent) + 2λacurrent)

one arrives at an appropriate gradient descent algorithm for optimizing the
penalized training loss (105). (Potentially, an appropriate value for λ might be
chosen based on cross-validation.)
Something that may at first seem quite different would be to take a Bayesian

point of view. For example, with a univariate regression model for outputs

yi = f (xi|A) + εi

for the εi iid N
(
0, σ2

)
, a likelihood is simply

l
(
A, σ2

)
=

N∏
i=1

h
(
yi|f (xi|A) , σ2

)
for h

(
·|µ, σ2

)
the normal pdf. If then g

(
A, σ2

)
specifies a prior distribution

for A and σ2, a posterior for
(
A, σ2

)
has density proportional to

l
(
A, σ2

)
g
(
A, σ2

)
For example, one might well assume that a priori the as are iid N

(
0, η2

)
(where

small η2 will provide regularization and it is again unclear whether one wants
to include the as corresponding to bias terms in such an assumption or to
instead provide more diffuse priors for them, like improper "Uniform(−∞,∞)"
or at least large variance normal ones). A standard improper prior for σ2

is lnσ ∼Uniform(−∞,∞). In any case, whether improper or proper, abuse
notation and write g

(
σ2
)
for a prior density for σ2.
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Then with independent mean 0 variance η2 priors for all the weights (except
possibly the ones for bias terms that might be given Uniform(−∞,∞) priors)
one has

ln
(
l
(
A, σ2

)
g
(
A, σ2

))
∝ −NK ln (σ)− 1

2σ2

N∑
i=1

(yi − f (xi|A))
2 − 1

2η2
J (A) + ln g

(
σ2
)

= −NK ln (σ) + ln g
(
σ2
)
− 1

σ2

(
N∑
i=1

(yi − f (xi|A))
2

+
σ2

η2
J (A)

)
(106)

(flat improper priors for the bias weights correspond to the absence of terms
for them in the sums for J (A) in form (104)). This recalls display (105) and
suggests that appropriate λ for regularization can be thought of as a variance
ratio of "observation variance" and prior variance for the weights.
It’s fairly clear how to define Metropolis-Hastings-within-Gibbs algorithms

for sampling from l
(
A, σ2

)
g
(
A, σ2

)
. But it seems that typically the high di-

mensionality of the parameter space combined with the symmetry-derived multi-
modality of the posterior will prevent one from running an MCMC algorithm
long enough to fully detail the posterior It also seems unlikely however, that
detailing the posterior is really necessary or even desirable. Rather, one might
simply run the MCMC algorithm, monitoring the values of l

(
A, σ2

)
g
(
A, σ2

)
corresponding to the successively randomly generated MCMC iterates. An
MCMC algorithm will spend much of its time where the corresponding poste-
rior density is large and we can expect that a long MCMC run will identify
a nearly modal value for the posterior. Rather than averaging neural nets
according to the posterior, one might instead use as a predictor a neural net
corresponding to a parameter vector (at least locally) maximizing the posterior.
Notice that one might even take the parameter vector in an MCMC run

with the largest l
(
A, σ2

)
g
(
A, σ2

)
value and for a grid of σ2 values around

the empirical maximizer use the back-propagation algorithm modified to fully
optimize

N∑
i=1

(yi − f (xi|A))
2

+
σ2

η2
J (A)

over choices ofA. This, in turn, could be used with relationship (106) to perhaps
improve somewhat the result of the MCMC "search."

8.4 Convolutional Neural Networks

An application of neural network type ideas that has received much recent at-
tention is that of image classification. We will here provide a short introduction
to the area. Not surprisingly, success in this realm seems to rely as much upon
ideas from image processing as upon ideas from prediction.
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Mathematically, a grey-scale image is typically represented by an L × M
matrix X = [xlm] where each xlm ∈ {0, 1, 2, . . . , 254, 255} represents a bright-
ness at location (l,m). A color image is often represented by 3 matrices
Xr

L×M
= [xlm] , Xg

L×M
= [xlm] , and Xb

L×M
= [xlm] (again all with integer en-

tries in {0, 1, 2, . . . , 254, 255}) representing intensities in red, green, and blue
"channels." The standard machine learning problem is to (based on a train-

ing set of N images Xi or
[
Xr ,Xg ,Xb

]
i
with corresponding class identities

yi ∈ {1, 2, . . . ,K}) produce a classifier. (For example, a standard test problem
is "automatic" recognition of hand-written digits 0 through 9.)
Simple convolutional neural networks with H hidden layers and a softmax

output layer producing class probabilities are successive compositions of more
or less natural linear and non-linear operations that might be represented as
follows. For σH operating on X using some set of real number parameters
AH to produce some multivariate output (we will describe below some kinds
of things that are popularly used) a "deepest layer" of the convolutional neural
net produces

ZH ≡ σH
(
X,AH

)
(107)

Then applying another set of operations σH−1 to the result (107) using some
set of parameters AH−1, the next layer of values in the convolutional neural net
is produced as

ZH−1 = σH−1
(
ZH ,AH−1

)
and so on, with

Zh = σh
(
Zh+1,Ah

)
(108)

for h = H,H−1, . . . , 1 where σ1 is <K-valued (the top layer of hidden values is
a K-vector). Then, with g the softmax function the output K-vector of class
probabilities is

g
(
Z1
)

In multi-channel cases, it seems common to develop separate series of composi-
tions based on Xr ,Xg , and Xb and to bring them together only in the top or
top few levels of this kind of hierarchy.
Variants of this basic structure are possible and have been used. For ex-

ample, it is sometimes done to make a "direct connection" between layer h and
one deeper than layer h+ 1. That is the option to employ a form

Zh = σh
(
Zh+1,Zh+j ,Ah

)
for some j > 1 or even a form

Zh = σh
(
Zh+1,X,Ah

)
making a direct connection to the input layer is sometimes employed. (Obvi-
ously, even more complicated schemes are possible.)

116



Most of what we have said thus far in this section is not really special to
the problem of image classification (and could serve as a high-level introduction
to general neural net predictors). What sets the "convolutional" neural net-
work field apart from "generic" neural network practice is the image-processing-
inspired forms employed in the functions σh. The most fundamental form is
one that applies "linear filters" to images followed by some nonlinear operation.
This creates what is commonly called a "convolution" layer.
To make the idea of a convolutional layer precise, consider the following.

Let F be an R × C matrix. Typically this matrix is much smaller than the
image and square (at least when "horizontal" and "vertical" resolutions in the
images are the same), and R and C are often odd. One can then make from
F and X a new matrix F ⊗X of dimension (L−R+ 1) × (M − C + 1) with
entries

(F ⊗X)ij =

R∑
a=1

C∑
b=1

fabx(i+a−1),(j+b−1) (109)

A natural way to think about this operation is to align an R × C integer grid
with values in F on the grid points with a (larger) corresponding grid for the
image X, setting the upper left (1, 1) corner of the F grid at the (i, j) location
on the X grid, and to then sum products of aligned matrix entries. The entries
of F serve as weights on the values in the R×C part of the image aligned with
the filter matrix. Figure 26 illustrates this process for a simple case where F
is 3 × 3 (and so ultimately F ⊗X has 2 fewer columns and 2 fewer rows than
X and is thus (L− 2)× (M − 2)).

Figure 26: Illustration of the use of the 3× 3 filter matrix F with L×M image
matrix X to produce the (L− 2)× (M − 2) matrix F ⊗X.
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This convolution operation is linear and it is typical practice to introduce
non-linearity by following convolution operations in a layer with the hinge func-
tion max (u, 0) applied to each element u of the resulting matrix. Sometimes
people (apparently wishing to not lose rows and columns in the convolution
process) "0 pad" an image with extra rows and columns of 0s before doing the
convolution—a practice that strikes this author as lacking sound rationale.
Multiple convolutions are typically created in a single convolution layer.

Sometimes the filter matrices are filled with parameters to be determined in
fitting (i.e. are part of Ah in the representation (108)). But they can also be
fixed matrices created for specific purposes. For example the 3× 3 matrices

Svert =

 −1 0 1
−2 0 2
−1 0 1

 and Shoriz =

 1 2 1
0 0 0
−1 −2 −1


are respectively the vertical and horizontal Sobel filter matrices, commonly used
in image processing when searching for edges of objects or regions. And various
"blurring" filters (ordinary arithmetic averaging across a square of pixels and
weighted averaging done according to values of a Gaussian density set at the
center of an integer grid) are common devices meant to suppress noise in an
image.
As multiple layers each with multiple new convolutions are created, there is

potential explosion of the total dimensionality of the sets of Zh and Ah. Two
devices for controlling that explosion are the notions of sampling and pooling
to reduce the size of a Z. First, instead of creating and subsequently using an
entire filtered image F ⊗X, one can use only every sth row and column. In
such a "sampling" operation s is colloquially known as the "stride." Roughly
speaking, this reduces the size of a Z by a factor of s2. Another possibility is
to choose some block size, of size say s × t, and divide an L ×M image into
roughly (

L

s

)(
M

t

)
non-overlapping blocks, within a block applying a "pooling" rule like "simple
averaging" or "maximum value." One then uses the rectangular array of these
pooled values as a layer output. This, of course, reduces the size of a Z by a
factor of roughly st. It seems common to apply one of these ideas after each one
or few convolution layers in a network, and especially before reaching the top
and final one or few layers. The final hidden layers of a convolutional neural net
are of the "ordinary" type described earlier and if the dimensionality of their
inputs are too large, numerical and fitting problems will typically ensue.

8.5 Recurrent Neural Networks

Another context where neural network ideas have found application is that of
(non-linear) time series prediction. That is, vectors of inputs and outputs are
sometimes indexed with time order and one expects information from previous
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periods to be of help in predicting response at the current one. To give some
sense of what can be done, consider a generalization of the toy single hidden
layer feed-forward neural net with 3 inputs, 2 hidden nodes, and 2 outputs used
in Section 8.1. Where input/output pairs (x,y) with x ∈ <3 and y ∈ <2 are
indexed by (time) integer t, the notion of recurrent neural network practice is
to allow values z1t and z2t at the hidden nodes to depend not only upon xt but
also upon z1t−1 and z2t−1 and/or yt−1.

A so-called Elman Network replaces the basic expressions for moving from
input to hidden layer in Section 8.1 with

z1t = σ (α01 · 1 + α11x1t + α21x2t + α31x3t + α∗11z1t−1 + α∗21z2t−1)

z2t = σ (α02 · 1 + α12x1t + α22x2t+ α32x3t + α∗12z1t−1 + α∗22z2t−1)

and a Jordan Network replaces them with

z1t = σ (α01 · 1 + α11x1t + α21x2t + α31x3t + α∗11y1t−1 + α∗21y2t−1)

z2t = σ (α02 · 1 + α12x1t + α22x2t + α32x3t + α∗12y1t−1 + α∗22y2t−1)

These are obviously some kind of non-linear auto-regressive relationships and
introduce additional weights α∗ that must be fit in order to apply the prediction
methodology.
It’s obvious that once one opens this line of thinking many more complicated

forms are possible. Forms for values at current hidden nodes could be postulated
to depend explicitly on values at hidden nodes or outputs further in the past
than period t− 1. Both values at hidden nodes and outputs could be involved.
Etc. Fitting algorithms based on gradient descent are tailored to the particular
recurrence relationships employed.

8.6 Radial Basis Function Networks

Section 6.7 of HTF considers the use of the kind of kernels applied in kernel
smoothing as basis functions. That is, for

Kλ (x, ξ) = D

(
‖x− ξ‖

λ

)
one might consider fitting nonlinear predictors of the form

f (x) = β0 +

M∑
j=1

βjKλ
(
x, ξj

)
(110)

where each basis element has prototype parameter ξ and scale parameter λ. A
common choice of D for this purpose is the standard normal pdf.
A version of this with fewer parameters is obtained by restricting to cases

where λ1 = λ2 = · · · = λM = λ. This restriction, however, has the potentially
unattractive effect of forcing "holes" or regions of <p where (in each) f (x) ≈ β0,
including all "large" x. A way to replace this behavior with potentially differing
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values in the former "holes" and directions of "large" x is to replace the basis
functions

Kλ
(
x, ξj

)
= D

(∥∥x− ξj∥∥
λ

)
with normalized versions

hλj (x) =
D
(∥∥x− ξj∥∥ /λ)∑M

k=1D (‖x− ξk‖ /λ)

to produce a form

f (x) = β0 +

M∑
j=1

βjh
λ
j (x) (111)

The fitting of form (110) by choice of β0, β1, . . . , βM , ξ1, ξ2, . . . , ξM , λ1, λ2, . . . ,
λM or form (111) by choice of β0, β1, . . . , βM , ξ1, ξ2, . . . , ξM , λ is fraught with
all the problems of over-parameterization and lack of identifiability associated
with neural networks.
Another way to use radial basis functions to produce flexible functional

forms is to replace the forms σ (α0m +α′mx) in a neural network with forms
Kλm (α′mx, ξm) or hλm (α′mx).

9 PredictionMethods Based on Rectangles: Trees
and PRIM

This section begins something genuinely new to our discussion. That is the
search for good predictors that are constant on p-dimensional "rectangles" in
the input space, that is on subsets of <p of the form

R = {x ∈ <p|a1 < x1 < b1 and a2 < x2 < b2 . . . and ap < xp < bp}

for (possibly infinite) values aj < bj for j = 1, 2, . . . , p. The basic idea is that
if the values aj and bj can be chosen so that ys corresponding to vectors of
inputs x in a training set in a particular rectangle are "homogeneous," then
a corresponding SEL predictor using training set "rectangle mean responses"
or a 0-1 loss classifier using training set "rectangle majority classes" might be
approximately optimal.27

The search for good predictors constant on rectangles is fundamentally an
algorithmic matter, rather than something that will have a nice closed form
representation (it is not like ridge regression for example). But (provided
"fast" and "effective" algorithms can be identified) it has things that make it
very attractive. For one thing, there is complete invariance to monotone
transformation of numerical features. It is irrelevant to searches for good
27This is essentailly the same motivation provided for nearest neighbor rules in Section

1.3.3.
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boundaries for rectangles whether a coordinate of the input x is expressed on an
"original" scale or a log scale or on another (monotone transform of the original
scale). The same predictor/predictions will result. This is a very attractive
and powerful feature and is no doubt partly responsible for the popularity of
rectangle-based predictors as building blocks for more complicated methods (like
"boosting trees").
The structure of predictors constant on rectangles is also an intuitively ap-

pealing one, easily explained and understood. This helps make them very
popular with non-technical consumers of predictive analytics.
In this section we consider two rectangle-based prediction methods, the first

(CART) using binary tree structures and the second (PRIM) employing a kind
of "bump-hunting" logic.

9.1 Regression and Classification Trees (CART)

The common acronym for this methodology is CART (classification and regres-
sion trees) and classification trees are sometimes referred to as "decision trees."
Here we’ll first consider the SEL/regression version and then the classification
version.

9.1.1 Regression Trees

We consider a forward-selection/"greedy" algorithm for inventing predictions
constant on p-dimensional rectangles, by successively looking for an optimal
binary split of a single one of an existing set of rectangles. Define

aj = min
i=1,2,...,N

xij and bj = max
i=1,2,...,N

xij

Begin with the rectangle in <p

R =

p∏
j=1

[aj , bj ] = {x ∈ <p|each aj ≤ xj ≤ bj}

and look for an index j1 and a value aj1 < s1 < bj1 (with s1 6= xij1 for any i) so
that splitting the initial rectangle at xji = s1 (to produce the two sub-rectangles
R ∩ {x ∈ <p|xj1 ≤ s1} and R ∩ {x ∈ <p|xj1 > s1}) so that the resulting two
rectangles minimize

SSE =
∑

rectangles

∑
i with xi in
the rectangle

(
yi − yrectangle

)2
One then splits (optimally) one of the (now) two rectangles on some variable
xj2 at some s2 (with s2 6= xij2 for any i) etc.
Where l rectangles in <p (say R1, R2, . . . , Rl) have been created, and

m (x) = the index of the rectangle to which x belongs
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the corresponding SEL tree predictor is

f̂l (x) =
1

# training input vectors xi in Rm(x)

∑
i with xi
in Rm(x)

yi

and in this notation the training error is

SSE =

N∑
i=1

(
yi − f̂l (xi)

)2
or the corresponding mean squared prediction error

err =
1

N
SSE

If one is to continue beyond l rectangles, one then looks for a value sl to split
one of the existing rectangles R1, R2, . . . , Rl on some xjl and thereby produce
the greatest reduction in SSE. (We note that there is no guarantee that after
l splits one will have the best (in terms of SSE) possible set of l+1 rectangles.)

Any series of binary splits of rectangles can be represented graphically as a
binary tree, each split represented by a node where there is a fork and each final
rectangle by an end node. It is convenient to discuss rectangle-splitting (and
"unsplitting") in terms of operations on corresponding binary trees, and hence-
forth we adopt this language. Figures 27 and 28 provide three representations
of the same hypothetical regression tree with p = 2 ... a predictor constant on
rectangles in <2.

Figure 27: Two representations of a hypothetical tree predictor for p = 2.

The basic formulation of the tree-growing method here employs "one-step-
at-a-time"/"greedy" (unable to defer immediate reward for the possibility of
later success) methods. Like all such methods, they are not guaranteed to
follow paths through the set of trees that ever get to "best" ones since they are
"myopic," never considering what might be later in a search, if a current step
were taken that provides little immediate payoff.
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Figure 28: A third representation of the hypothetical p = 2 tree predictor
portrayed in Figure 27.

A regression tree example (essentially suggested by Mark Culp) dramatically
illustrates this limitation. Consider a p = 3 case where x1 ∈ {0, 1} , x2 ∈ {0, 1} ,
and x3 ∈ [0, 1]. In fact, suppose that x1 and x2 are iid Bernoulli(.5) independent
of x3 that is Uniform(0, 1). Then suppose that conditional on (x1, x2, x3) the
output y is N(µ (x1, x2, x3) , 1) for

µ (x1, x2, x3) = 1000 · I [x1 = x2] + x3

For a big training sample iid from this joint distribution, all branching will typi-
cally be done on the continuous variable x3, completely missing the fundamental
fact that it is the (joint) behavior of (x1, x2) that drives the size of y. (This
example also supports the conventional wisdom that as presented the splitting
algorithm "favors" splitting on continuous variables over splitting on values of
discrete ones.)

9.1.2 Classification Trees

The "classification trees" version of this material is very similar to the continuous
y (SEL) regression tree version. One needs only to define an empirical loss to
associate with a given tree parallel to SSE used above. To that end, note that
in a K-class problem (where y takes values in G = {1, 2, . . . ,K}) corresponding
to a particular rectangle Rm is the fraction of training vectors with classification
k,

p̂mk =
1

# training input vectors in Rm

∑
i with xi
in Rm

I [yi = k]

and a plausible G-valued predictor based on l rectangles is

f̂l (x) = arg max
k∈G

p̂m(x)k
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the class that is most heavily represented in the rectangle to which x belongs.28

The empirical misclassification rate for this predictor (that can be used as a
rectangle-splitting criterion) is

err =
1

N

N∑
i=1

I
[
yi 6= f̂l (xi)

]
=

1

N

l∑
m=1

Nm
(
1− p̂mk(m)

)
where Nm = # training input vectors in Rm, and k (m) = arg max

k∈G
p̂mk. Two

other popular splitting criteria are "the Gini index"

err =
1

N

l∑
m=1

Nm

(
K∑
k=1

p̂mk (1− p̂mk)

)
and the so-called "cross entropy"

err = − 1

N

l∑
m=1

Nm

(
K∑
k=1

p̂mk ln (p̂mk)

)
These latter two criteria are average (across rectangles) measures of "purity"
(near degeneracy) of training set response distributions in the rectangles. Upon
adopting one of these forms to replace SSE in the regression tree discussion,
one has a classification tree methodology. HTF suggest using the Gini index
or cross entropy for tree growing and any of the indices (but most typically the
empirical misclassification rate) for tree pruning according to cost-complexity
(to be discussed next).

9.1.3 Optimal Subtrees

It is, of course, possible to continue splitting rectangles/adding branches to a
tree until every distinct x in the training set has its own rectangle. But that is
not helpful in a practical sense, in that it corresponds to a very "low bias/high
variance"/complex predictor. So how does one find a tree of appropriate size?
How does one choose a size at which to stop growing a tree, or more generally,
prune a large tree back to a good size? (This latter is more general in that
pruning a tree can produce subtrees not met in a sequence of trees as built up to
a final one.) It turns out that it is possible to effi ciently find a nested sequence
of "optimal" subtrees of a large tree, and that methodology can in turn be used
in cross-validation.
For T a subtree of some fixed large tree T0 (e.g. grown until the cell with

the fewest training xi contains 5 or less such points or in classification contexts
until the training error is 0) write

E (T ) = N · err =

N∑
i=1

L
(
f̂ (xi) , yi

)
28Much as we noted regarding nearest neighbor methods in Section 1.3.3, it can in some

contexts be more useful to have the p̂mk values themselves than to have only the 0-1 loss
classifier derived from them.
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(the total training error for the tree predictor based on T ). For α > 0 define
the quantity

Cα (T ) = |T |+ α · E (T )

(for, in the obvious way, |T | the number of final nodes in the candidate tree).29
Write

T (α) = arg min
subtrees T

Cα (T )

and let f̂α be the corresponding predictor.
The question of how to find a subtree T (α) optimizing Cα (T ) without mak-

ing an exhaustive search over subtrees for every different value of α has a work-
able answer. There is a relatively small number of nested candidate subtrees
that are the only ones that are possible minimizers of Cα (T ), and as α decreases
one moves through that nested sequence of subtrees from the largest/original
tree to the smallest.
One may quickly search over all "pruned" versions of T0 (subtrees T created

by removing a node where there is a fork and all branches that follow below it)
and find the one with minimum

E (T )− E (T0)

|T0| − |T |
(This IS the per node—of the lopped off branch of the first tree—increase in E.)
Call that subtree T1. T0 is the optimizer of Cα (T ) over subtrees of T0 for every
α ≥ (|T0| − |T1|) / (E (T1)− E (T0)), but at α = (|T0| − |T1|) / (E (T1)− E (T0)),
the optimizing subtree switches to T1.

One then may search over all "pruned" versions of T1 for the one with
minimum

E (T )− E (T1)

|T1| − |T |
and call it T2. T1 is the optimizer of Cα (T ) over subtrees of T0 for every
(|T1| − |T2|) / (E (T2)− E (T1)) ≤ α ≤ (|T0| − |T1|) / (E (T1)− E (T0)), but at
α = (|T1| − |T2|) / (E (T2)− E (T1)) the optimizing subtree switches to T2, and
so on. (In this process, if there ever happens to be a tie among subtrees in
terms of a minimizing a ratio of increase in total training error per decrease
in number of nodes, one chooses the subtree with the smaller |T |.) For T (α)
optimizing Cα (T ), the function of α,

Cα (T (α)) = min
T
Cα (T )

is piecewise linear in α, and both it and the optimizing nested sequence of
subtrees can be computed very effi ciently in this fashion. Figure 29 illustrates
the geometry of the situation. Notice that α is a complexity parameter and
|T (α)| is non-decreasing in α.
29 It is, of course, equivalent to consider a quantity E (T )+λ |T | for a λ > 0 in notation more

like that used in other contexts like the ridge regression problem. Using α as a weight on E (T )
to define Cα, is equivalent to using λ = 1/α as a weight on |T |. The penalized form E (T ) +
λ |T | is probably more often used (at least for user interface) in software implementations.
The present Cα is more natural in the context of the development of optimal subtrees.
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Figure 29: Cartoon of functions of α, Cα (T ) for fixed T , and the optimized
version Cα (T (α)).

One can then employ K-fold cross-validation to choose α as follows. For
each of the K remainders T − T k (in the notation of Section 1.3.6)

1. grow an appropriate large tree (on a given dataset), then

2. "prune" the tree in 1. back by for each α > 0 (a complexity parameter,
weighting the remainder-in-training-sample error total Ek (for T − T k)
against complexity defined in terms of tree size) minimizing over choices
of subtrees, the quantity

Ckα (T ) = |T |+ α · Ek (T )

(for Ek (T ) the error total for the corresponding tree predictor). Write

Tk (α) = arg min
subtrees T

Ckα (T )

and let f̂kα be the corresponding predictor.

Then (as in Section 1.3.6), letting k (i) be the index of the fold T k containing
training case i, one computes the cross-validation error

CV (α) =
1

N

N∑
i=1

L
(
f̂k(i)α (xi) , yi

)
For α̂ a minimizer of CV (α), one then operates on the entire training set,
growing a large tree T and then finding the subtree, say T (α̂), optimizing
Cα̂ (T ) = |T |+ α̂ · E (T ), and using the corresponding predictor f̂α̂.
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9.1.4 Measuring the Importance of Inputs for Tree Predictors

Consider the matter of assigning measures of "importance" of input variables
for a tree predictor. In the spirit of ordinary linear models assessment of the
importance of a predictor in terms of some reduction it provides in some error
sum of squares, Breiman suggested the following. Suppose that in a regression
or classification tree, input variable xj provides the rectangle splitting criterion
for nodes node1j , . . . , nodem(j)j and that before splitting at nodelj , the relevant
rectangle Rlj has (for ŷlj the prediction fit for that rectangle) associated sum
of training losses

Elj =
∑

i with xi∈Rlj

L (ŷlj , yi)

and that after splitting Rlj on variable xj to create rectangles R1lj and R2lj
(with respective fitted predictions ŷ1lj and ŷ

2
lj) one has sums of training losses

associated with those two rectangles

E1lj =
∑

i with xi∈R1
lj

L
(
ŷ1lj , yi

)
and E2lj =

∑
i with xi∈R2

lj

(
ŷ2lj , yi

)
The reduction in total error provided by the split on xj at nodelj is thus

Dlj = Elj −
(
E1lj + E2lj

)
(In regression/SEL contexts, this is a reduction in error sum of squares provided
by the split of Rlj . In 0-1 loss classification contexts it is a reduction in training
set misclassification errors.) One might then take

Ij =

m(j)∑
l=1

Dlj

a measure of the importance of xj in fitting the tree and compare the various
Ijs (or perhaps the square roots,

√
Ijs).

Further, if a predictor is a (weighted) sum of regression trees (e.g. produced
by "boosting" or in a "random forest") and Ijm measures the importance of xj
in the mth tree, then

Ij. =
1

M

M∑
m=1

Ijm

is perhaps one measure of the importance of xj in the overall predictor. One
can then compare the various Ij.(or square roots) as a means of comparing the
importance of the input variables.

9.2 PRIM (Patient Rule Induction Method)

This is another rectangle-based method of making a predictor on <p. The
language seems to be "patient" as opposed to "rash" and "rule induction" as in
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"predictor development" or perhaps "conjunctive rule development" from the
context of "market basket analysis." See Section 17.1 in regard to this latter
usage.
PRIM can be thought of as a type of "bump-hunting." For a series of

rectangles (or boxes) in p-space

R1, R2, . . . , Rl

one defines a predictor

f̂l (x) =



yR1
if x ∈ R1

yR2−R1
if x ∈ R2 −R1

...
...

yRm−∪m−1k=1 Rk
if x ∈ Rm − ∪m−1k=1 Rk

...
...

y(∪lk=1Rk)
c if x /∈ ∪lk=1Rk

The boxes or rectangles are defined recursively in a way intended to catch
"the remaining part of the input space with the largest output values." That
is, to find R1

1. identify a rectangle

l1 ≤ x1 ≤ u1
l2 ≤ x2 ≤ u2
...

lp ≤ xp ≤ up

that includes all input vectors in the training set,

2. identify a dimension, j, and either lj or uj so that by reducing uj or
increasing lj just enough to remove a fraction α (say α = .1) of the training
vectors currently in the rectangle, the largest value of

yrectangle

possible is produced, and update that boundary of the rectangle,

3. repeat 2. until some minimum number of training inputs xi remain in the
rectangle (say, at least 10),

4. expand the rectangle in any direction (increase a uj or decrease an lj)
adding a training input vector that provides a maximal increase in yrectangle ,
and

5. repeat 4. until no increase is possible by adding a single training input
vector.
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This produces R1. For what it is worth, step 2. is called "peeling" and step 4.
is called "pasting."
Upon producing R1, one removes from consideration all training vectors

with xi ∈ R1 and repeats 1. through 5. to produce R2. This continues until a
desired number of rectangles has been created. One may pick an appropriate
number of rectangles (l is a complexity parameter) by cross-validation and then
apply the procedure to the whole training set to produce a set of rectangles and
predictor on p-space that is piece-wise constant on regions built from boolean
operations on rectangles.
PRIM is not anywhere near as common as classification and regression trees,

but shares with them some of their attractive features, especially invariance to
monotone transformation of coordinates of an input vector.

10 Predictors Built on Bootstrap Samples

10.1 Bagging in General

One might make B bootstrap samples of N (random samples with replacement
of size N) from the training set T , say T ∗1,T

∗
2, . . . ,T

∗
B , and train on these

bootstrap samples using a particular method of prediction to produce, say,

predictor f̂∗b based on T ∗b

Rather than using these to estimate the prediction error as in Section 16.4,
consider using them to build a predictor.
The possibility considered in Section 8.7 of HTF is the use of bootstrap

aggregation, or "bagging" under SEL. This is use of the predictor

f̂bag (x) ≡ 1

B

B∑
b=1

f̂∗b (x)

Notice that even for fixed training set T and input x, this is random (varying
with the selection of the bootstrap samples). One might let E∗ denote averaging
over the creation of a single bootstrap sample and f̂∗ be the predictor derived
from such a bootstrap sample and think of

E∗f̂∗ (x)

as the "true" bagging predictor under SEL (that has the simulation-based ap-
proximation f̂bag (x)). One is counting on a law of large numbers to conclude
that f̂bag (x) →E∗f̂∗ (x) as B → ∞. Note too, that unless the operations
applied to a training set to produce f̂ are linear, E∗f̂∗ (x) will differ from the
predictor computed from the training data, f̂ (x). The primary motivation
for SEL bagging is the hope of averaging (not-perfectly-correlated as they are
built on not-completely-overlapping bootstrap samples) low-bias/high-variance
predictors to reduce variance (while maintaining low bias).
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A bagged predictor in the 0-1 loss classification case is

f̂∗bag (x) = arg max
k

B∑
b=1

I
[
f̂∗b (x) = k

]
(a majority vote combination of the individual classifiers). One here expects
that for each k a law of large numbers will imply that

1

B

B∑
b=1

I
[
f̂∗b (x) = k

]
→ P ∗

[
f̂∗ (x) = k

]
as B →∞

so that there is a limiting classifier

arg max
k

P ∗
[
f̂∗ (x) = k

]
for which f̂∗bag (x) is a simulation-based approximation.
It is common practice to make a kind of running cross-validation estimate of

error based on "out-of-bag" (OOB) samples as one builds a bagged predictor.
Note that (in cases where all training cases are different) for large N on average
T ∗b fails to contain about 37% of training cases.30 Then, for each b suppose
one keeps track of the set of (OOB) indices I (b) ⊂ {1, 2, . . . , N} for which the
corresponding training vector does not get included in the bootstrap training
set T ∗b . In SEL contexts let

ŷ∗iB =
1

# of indices b ≤ B such that i ∈ I (b)

∑
b≤B such that i∈I(b)

f̂∗b (xi)

and in 0-1 loss classification contexts let

ŷ∗iB = arg max
k

∑
b≤B such that i∈I(b)

I
[
f̂∗b (xi) = k

]
Then in SEL regression contexts, a running cross-validation type of estimate of
Err is

OOB (B) =
1

N

N∑
i=1

(yi − ŷ∗iB)
2

and a corresponding estimate for 0-1 loss classification contexts is

OOB (B) =
1

N

N∑
i=1

I [yi 6= ŷ∗iB ]

One then expects the convergence of OOB(B), and plotting of OOB(B) versus
B is a standard way of trying to assess whether enough bootstrap samples have

30The probability that a particular training case is missed in a bootstrap sample is(
1−N−1

)N ≈ e−1 ≈ .37 for N of any reasonable size.
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been made to adequately represent the limiting predictor. In spite of the fact
that for small B the (random) predictor f̂∗B is built on a small number of samples
trees and is fairly simple, B is not really a complexity parameter, but is rather
a convergence parameter.

Where losses other than SEL or 0-1 loss are involved, exactly how to "bag"
bootstrapped versions of a predictor is not altogether obvious, and apparently
even what might look like sensible possibilities can do poorly.

10.2 Random Forests: Special Bagging of Tree Predictors

This is an elaboration of the "bagging" (bootstrap aggregation) idea of Section
10.1 applied specifically to (regression and classification) trees. For each one of
B bootstrap samples ofN (from the training set T ), T ∗b , develop a corresponding
regression or classification tree by

1. at each node, randomly selecting m of the p input variables and finding an
optimal single split of the corresponding rectangle over the selected input
variables, splitting the rectangle, and

2. repeating 1 at each node up to a fixed depth or until no single-split im-
provement in splitting criterion is possible without creating a rectangle
with less than a small number of training cases, nmin .

(Note that no pruning is applied in this development.) Then let f̂∗b (x) be the
corresponding tree-based predictor (taking values in < in the regression case or
in G = {1, 2, . . . ,K} in the classification case). A random forest predictor in
the regression case is then

f̂∗B (x) =
1

B

B∑
b=1

f̂∗b (x)

and a 0-1 loss random classifier is

f̂∗B (x) = arg max
k

B∑
b=1

I
[
f̂∗b (x) = k

]
(This is a "majority vote" of the B constituent classification trees.)

As we have noted before in reference to nearest neighbor classification and
classification trees, it can be more important in K-class classification models to
estimate P [y = k|x] than it is to approximate the optimal classifier at x. If,
for tree b in a forest of B such trees,

Ib (x) = the set of indices of training cases with xi in the same rectangle as x

then

p̂bk (x) =

∑
xi∈Ib(x) I [yi = k]

# [xi ∈ Ib (x)]
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(the fraction of training cases with xi in the same rectangle as x and yi = k)
estimates this probability using tree b. Then one random forest estimate of
P [y = k|x] is the simple average

1

B

B∑
b=1

p̂bk (x)

An alternative possibility is the weighted average∑B
b=1 #

[
xi ∈ Ib (x)

]
· p̂bk (x)∑B

b=1 # [xi ∈ Ib (x)]
=

∑
xi∈Ib(x) I [yi = k]∑B
b=1 # [xi ∈ Ib (x)]

The basic tuning parameters in the development of f̂∗B (x) are then m, and
nmin , and (if used) a maximum tree depth. Standard default values of parame-
ters are

• m = bp/3c and nmin = 5 for regression problems, and

• m =
⌊√

p
⌋
and nmin = 1 for classification problems.

The default nmin = 1 for classification problems means that splitting termi-
nates only because of reaching a maximum depth or the impossibility of reducing
the splitting criterion with a single additional split. In the event that the max-
imum tree depth really doesn’t come into play (because it is set to some value
that is large in relative terms) this will produce random forest classifiers with
0 training error rate. (Any given training case will be missed by only about
37% of B bootstrap samples, so that about 63% of the B bootstrap samples will
produce a tree correctly classifying the case, and so majority voting means that
the random forest will correctly classify the case.) But notice that this does
not imply that the out-of-bag-error OOB(B) will be 0. And it does not imply
that OOB(B) for large B is unreliable as an indicator of the likely performance
of a random forest classifier. It only implies that the training error rate is
completely unreliable as an indicator of random forest classifier effi cacy.
There is a fair amount of confusing discussion in the literature about the

impossibility of a random forest "overfitting" with increasing B. This seems to
be related to test error not initially-decreasing-but-then-increasing-in-B (which
is perhaps loosely related to OOB(B) converging to a positive value associated
with the limiting predictor f̂ rf (and not showing such behavior) and/or 0 training
error rate for a random forest classifier not implying overfit31). But as HTF
point out on their page 596, it is an entirely different question as to whether
f̂ rf itself is "too complex" to be adequately supported by the training data, T .
(And the whole discussion seems very odd in light of the fact that for any finite
B, a different choice of bootstrap samples would produce a different f̂∗B as a
new randomized approximation to f̂ rf . Even for fixed x, the value f̂∗B (x) is a

31For many predictors/classifiers a 0 training error does suggest over-fit, but not necessarily
for random forest classifiers.
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random variable. Only f̂ rf (x) is fixed.) The fact that the out of bag error will
increase if optimal allowable tree complexity (encoded in nmin and tree depth)
and/or optimal m are exceeded means that a random forest f̂ rf (x) can indeed
overfit (be too complex for the real information content of the training set).
There is also a fair amount of confusing discussion in the literature about

the role of the random selection of them predictors to use at each node-splitting
(and the choice of m) in reducing "correlation between trees in the forest." The
Breiman/Cutler web site http://www.stat.berkeley.edu/~breiman/Random
Forests/cc_home.htm says that the "forest error rate" (presumably the error
rate for f̂ rf) depends upon "the correlation between any two trees in the forest"
and the "strength of each tree in the forest." The meaning of "correlation" and
"strength" is not clear if anything technical/precise is intended. One possibility
for the first is some version of correlation between values of f̂∗1 (x) and f̂∗2 (x)
as one repeatedly selects the whole training set T in iid fashion from P and then
makes two bootstrap samples– Section 15.4 of HTF seems to use this meaning.32

A meaning of the second is presumably some measure of average effectiveness of
a single f̂∗b. HTF Section 15.4 goes on to suggest that increasing m increases
both "correlation" and "strength" of the trees, the first degrading error rate
and the second improving it, and that the OOB estimate of error can be used
to guide choice of m (usually in a broad range of values that are about equally
attractive) if something besides the default is to be used.

10.3 Measuring the Importance of Inputs for Bagged Pre-
dictors

An idea of Breiman (phrased originally for random forests, but relevant to any
bagged predictor) is this. For every bootstrap sample T ∗b and predictor f̂∗b

based on the corresponding remainder T − T ∗b , one can compute a bth average
error across the corresponding OOB sample, say

errb =
1

#

[
i| case i is not in the
bootstrap sample b

] ∑
i s.t. case i is not in the
the bootstrap sample b

L
(
f̂∗b (xi) , yi

)

Then in the OOB sample randomly permute the values of the jth coordinate of
the input vectors, producing, say, input vectors x̃ji . One can then define

ẽrrjb =
1

#

[
i| case i is not in the
bootstrap sample b

] ∑
i s.t. case i is not in the
the bootstrap sample b

L
(
f̂∗b
(
x̃ji

)
, yi

)

and take the difference
Ijb = ẽrrjb − errb (112)

32A second possibility concerns "bootstrap randomization distribution" correlation (for a
fixed training set and a fixed x) between values f̂∗1 (x) and f̂∗2 (x).
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as an indicator (for the bth bootstrap sample) of the importance of variable j
to prediction. These can then be averaged across the B bootstrap samples to
produce

Ij =
1

B

B∑
b=1

Ijb (113)

as a variable importance measure for variable j, and compared across j. (Typ-
ically these will be positive and large values are indicative of high variable
importance.)
When applied to its specially constructed trees, these ideas produce a vari-

able importance measure for a random forest. It is worth saying that what is
made is then something different than what was suggested at the end of Section
9.1.4 for a predictor that is ultimately an average of tree predictors (that could
also be employed for the random forest).

10.3.1 The Boruta Wrapper/Heuristic for Variable Selection

A methodology of Kursa and Rudnicki for identification of all coordinates of
an input that have "statistically detectable" variable importance builds on the
importance measure Ij in display (113), usually derived from random forests.33

It is aimed at judging which Ijs are "clearly more than noise." To enable this,
when r predictors are currently under consideration some (say s ≥ max (5, r))
additional "shadow" (plausible noise) predictors are considered along with the
actual predictors. These shadow predictors are made by randomly permuting
entries in columns of the original input matrix for the predictors under con-
sideration. These "should" prove to be of no importance in the prediction of
y.
Boruta operates in stages in a "backwards elimination" fashion, beginning

with consideration of all p original predictors and at a given stage dropping from
the set of remaining potentially important variables those that are "clearly no
better" than the best shadow variable at the stage. What is done to make
decisions about elimination is to consider the set of values Ijb defined in display
(112) for a given j (newly indexing both those actual predictors still under
consideration as 1, . . . , r and those shadow predictors newly generated at the
beginning of the stage as r + 1, . . . , r + s), and compute both their mean Ij

(in expression (113)) and their sample standard deviation, call it Sj . Some
kind of rough test of "statistical significance" based on comparison of the scores
(possibly accumulated across stages)

Zj ≡ Ij

Sj

for real inputs (i.e. for j = 1, . . . , r) against

maxZj
j=r+1,...,r+s

33Boruta is the name of the mythological Slavik god of the forest.
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The elimination process is intended to ultimately drop from consideration all
those predictors whose scores are not clearly bigger than those of (by construc-
tion useless) shadow predictors.
This is, of course, a heuristic and exact details vary with implementation.

But the central idea is above and makes sense. It can be applied to any bagging
context, and variants of it could be applied where one is not bagging, but other
forms of holding out a test set are employed. Typically, the prediction method
used is the random forest, because of its reputation for broad effectiveness and
its independence of scaling of coordinates of the input. But there is nothing
preventing its use with, say, a linear prediction or smoothing methodology.

10.4 Bumping and "Active Set Selection"

Another/different thing one might do with bootstrap versions of a predictor is
to "pick-a-winner" based on performance on the training data. This is the
"bumping"/stochastic perturbation idea of HTF’s Section 8.9. That is, let
f̂∗0 = f̂ be the predictor computed from the training data, and define

b̂ = arg min
b=0,1,...,B

N∑
i=1

(
yi − f̂∗b (xi)

)2
and take

f̂bump (x) = f̂∗b̂ (x)

The idea here is that if a few cases in the training data are responsible for making
a basically good method of predictor construction perform poorly, eventually a
bootstrap sample will miss those cases and produce an effective predictor.
Rick (Wen) Zhou in his ISU PhD dissertation made another use of bootstrap-

ping, motivated by a real 2-class classification problem with "covariate shift."
x values in an important test set were mostly unlike input vectors xi available
in a fairly small training set. With relatively little information available in the
training set, highly flexible methods like nearest neighbor classification seemed
unlikely to be effective. But a single simple application of a less flexible method-
ology (like one based on logistic regression) also seemed unlikely to be effective,
because most test case input vectors were "near" at most "a few" training case
input vectors and extrapolation of some kind was unavoidable.
What Zhou settled on and ultimately found to be relatively effective was to

use (locally defined) bootstrap classifiers based on weighted bootstrap samples,
with weights chosen to depend upon x at which one is classifying. For a test
input vector x ∈ <p define weights for training case inputs xi by

wi (x) = exp
(
−η ‖x− xi‖2

)
for some appropriate η > 0. For w (x) =

∑N
i=1 wi (x) a single "weighted

bootstrap" sample tailored to the input x can be made by sampling N training
cases iid according to the distribution over i = 1, 2, . . . , N with probabilities
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pi (x) = wi (x) /w (x). Upon fitting a simple form of classifier to B such tailored
samples and using majority voting of those classifiers, one has a classification
decision for input x. It is one that respects both the likelihood that training
cases close to the input are most relevant to decisions about its likely response
and the need to enforce simplicity on the prediction.

11 "Ensembles" of Predictors

Bagging combines an "ensemble" of predictors consisting of versions of a single
predictor computed from different bootstrap samples. An alternative might be
to somehow weight together (or otherwise combine) different predictors (poten-
tially even based on different models or methods). Here we consider 3 versions
of this basic idea of somehow combining an ensemble of predictors to produce
one better than any element of the ensemble.

11.1 Bayesian Model Averaging for Prediction

One theoretically straightforward way to justify this kind of enterprise is through
the Bayes "multiple model" scenario (also used in Section 16.2.2). Suppose that
M models P1, P2, . . . , PM for (x, y) are under consideration, the mth of which
has parameter vector θm and corresponding density pm (x, y|θm). Then for
the mth model (repeatedly abusing notation by using p to name many different
functions) the training set T has density

pm (T |θm) =

N∏
i=1

pm (xi, yi|θm)

We’ll suppose here that θm is not known and that it has prior density gm (θm)
(for the mth model) and that and a prior probability for model m is

π (m)

Then a joint distribution for m,θm,T , and (x, y) has density

pm (x, y|θm) pm (T |θm) gm (θm)π (m)

This has a marginal density for y,x,T that is

M∑
m=1

π (m)

∫
pm (x, y|θm) pm (T |θm) gm (θm) dθm

from which the conditional mean of y|x,T is

E [y|x,T ] =

∑M
m=1 π (m)

∫ ∫
ypm (x, y|θm) pm (T |θm) gm (θm) dθmdy∑M

m=1 π (m)
∫ ∫

pm (x, y|θm) pm (T |θm) gm (θm) dθmdy
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Givenm (the identity of the "correct" model) the variables T , θm, and (x, y)
have joint density

pm (x, y|θm) pm (T |θm) gm (θm)

for which the conditional mean of y|x,T ,m is, say,

E [y|x,T ,m] =

∫ ∫
ypm (x, y|θm) pm (T |θm) gm (θm) dθmdy∫ ∫
pm (x, y|θm) pm (T |θm) gm (θm) dθmdy

so that ∫ ∫
ypm (x, y|θm) pm (T |θm) gm (θm) dθmdy

= E [y|x,T ,m] ·
∫ ∫

pm (x, y|θm) pm (T |θm) gm (θm) dθmdy

from whence

E [y|x,T ] =

∑M
m=1 E [y|x,T ,m]π (m)

∫ ∫
pm (x, y|θm) pm (T |θm) gm (θm) dθmdy∑M

m=1 π (m)
∫ ∫

pm (x, y|θm) pm (T |θm) gm (θm) dθmdy

This is the average of E[y|x,T ,m] with respect to the conditional distribution
(the "posterior" distribution) of m|x,T specified by

π (m|x,T ) =
π (m)

∫ ∫
pm (x, y|θm) pm (T |θm) gm (θm) dθmdy∑M

m=1 π (m)
∫ ∫

pm (x, y|θm) pm (T |θm) gm (θm) dθmdy

That is, optimal SEL prediction of y proceeds by weighting what would be
optimal predictors of y from the M constituent models by the relevant (up-
dated from π (m) by the information in x and T about the relevant density
pm (x, y|θm)) conditional probabilities of the M components. This is "Bayes
model averaging."
Essentially the same argument pertains in cases where y takes values in

G = {1, 2, . . . ,K} and 0-1 loss is involved. Under the same model as above,
P [y = k|x,T ] is a π (m|x,T )-weighted average of P [y = k|x,T ,m]s appropri-
ate under the M constituent models. (Of course, integrals "dy" are sums.)
Ultimately, optimal 0-1 loss classifiers then choose for input x (and training set
T ) the class k maximizing this Bayes model average probability.
These developments of Bayes model averaging predictors explicitly involve

x in the posterior distribution of m (given x and T ). This is because if one
thinks of a new x and corresponding y as generated by the same mechanism that
produces T , the observed x is informative about m. Another way of modeling
and calculating is the following.
One might suppose that the functions of x,

µm (x) =

∫ ∫
ypm (x, y|θm) gm (θm) dθmdy∫ ∫
pm (x, y|θm) gm (θm) dθmdy
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or

pm (y|x) =

∫
pm (x, y|θm) gm (θm) dθm∑K

y=1

∫
pm (x, y|θm) gm (θm) dθm

are objects of interest, but without a necessary connection to a specific new
observation x, itself informative about m and θm. (These functions are the
conditional means of and densities for y given x under particular models m.)
Positing a distribution specified by

pm (T |θm) gm (θm)π (m)

for m,θm,T in the multiple model scenario, the posterior distribution for m
given T has pmf

π (m|T ) =
π (m)

∫
pm (T |θm) gm (θm) dθm∑M

m=1 π (m)
∫
pm (T |θm) gm (θm) dθm

So the posterior mean of µm (x) given T is

M∑
m=1

µm (x)π (m|T )

and the posterior mean of pm (y|x) given T is

M∑
m=1

pm (y|x)π (m|T )

These differ from the previous "Bayes model averages," but they also represent
sensible ensembles of predictors appropriate in the constituent models.

11.2 Stacking: SEL ... and 0-1 Loss

The Bayes model averaging idea is theoretically unimpeachable, but rarely prac-
tical. It does, however, raise the question "What might be suggested like this,
but with a less Bayesian flavor?" One line of thinking is as follows.
Suppose thatM SEL predictors are available (all based on the same training

data), f̂1, f̂2, . . . , f̂M . One might seek a weight vector w for which the predictor

f̂ (x) =

M∑
m=1

wmf̂m (x)

is effective. Why this can improve on any single one of the f̂ms is in some
sense, this is "obvious." The set of possible w (over which one searches for good
weights) includes vectors with one entry 1 and all others 0. But to indicate
in a concrete setting why this might work, consider a case where M = 2 and
according to the PN × P joint distribution of (T , (x, y))

E
(
y − f̂1 (x)

)
= 0
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and
E
(
y − f̂2 (x)

)
= 0

Define
f̂α = αf̂1 + (1− α) f̂2

Then

E
(
y − f̂α (x)

)2
= E

(
α
(
y − f̂1 (x)

)
+ (1− α)

(
y − f̂2 (x)

))2
= Var

(
α
(
y − f̂1 (x)

)
+ (1− α)

(
y − f̂2 (x)

))
= (α, 1− α)Cov

(
y − f̂1 (x)

y − f̂2 (x)

)(
α

1− α

)
This is a quadratic function of α, that (since covariance matrices are non-
negative definite) has a minimum. Thus there is a minimizing α that typically
(is not 0 or 1 and thus) produces better expected loss than either f̂1 (x) or
f̂2 (x).
More generally, again using the PN ×P joint distribution of (T , (x, y)), one

may consider the random vector
(
f̂1 (x) , f̂2 (x) , . . . , f̂M (x) , y

)′
=
(
f̂
′
, y
)
and

let
E
(
f̂ f̂
′)

M×M

and Eyf̂
M×1

be respectively the matrix of expected products of the predictions and vector
of expected products of y and elements of f̂ . Upon writing out the expected
square to be minimized and doing some matrix calculus, it’s possible to see that
optimal weights are of the form

wopt =
(
E
(
f̂ f̂
′))−1

Eyf̂

Of course, this isn’t usable in practice, as the mean vector and expected cross
product matrix are unknown.
One practical possibility is to "pick-a-winning" w on the basis of LOO cross-

validation. That is, for f̂ im the mth predictor fit to the training set with the
ith case removed,

1

N

N∑
i=1

(
yi −

(
w0 +

M∑
m=1

wmf̂
i
m (xi)

))2
is a LOOCVE for the predictor

f̂ (x) = w0 +

M∑
m=1

wmf̂m (x)
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that could be optimized as a function of w = (w0, w1, . . . , wM ) to produce
wstack and the "stacked" predictor

f̂ (x) = w0 +

M∑
m=1

wstackm f̂m (x)

An ad hoc version of stacking-type averaging is choice of weight vector w
based on informal consideration of one’s (CV-supported) evaluation of the effec-
tiveness of the individual predictors f̂m (x) and the (training set) correlations
between them. (Averaging multiple highly correlated predictors can’t be ex-
pected to be particularly helpful, and individually effective predictors should
get more weight than those that are relatively speaking ineffective.)
The application of the general notion of stacking to 0-1 loss classification

has typically been treated on a very informal and ultimately unprincipled basis.
Probably the most common suggestion extant in the machine learning world is to
make classifications on a (potentially weighted) "majority vote" of an ensemble
of classifiers. This is completely unsupported by any sensible theory. In this
regard, see Vardeman and Morris "Majority Voting by Independent Classifiers
can Increase Error Rates" that appears in The American Statistician in 2013
and their "Reply" to comments on the paper by Baker and others that appeared
in the same journal in 2014.
A principled line of reasoning for the classification case is this. If a 0-1 loss

classifier is any good, it is an approximation of the optimal form (28). So if it
has an underlying voting function, that voting function must be equivalent to
(must be a monotone transform of) an approximate likelihood ratio. What one is
trying to do is find a better approximate likelihood ratio by combining several of
these. It is then sensible to use underlying voting functions for the classifier (and
the classifiers themselves in cases where no such voting function is available) as
features input into a tree-based classification methodology (tree-based because
of invariance to monotone transformation of coordinates of inputs and the fact
that constituent voting functions are potentially on completely different scales,
e.g. in some cases involving approximations for linear functions of P [y = 1|x]
and in others approximations for L (x) directly). Details of sensible cross-
validation to choose parameters of the constituent classification methods and
the final tree-based method in this context remain to be considered. But the
basic approach is clear and principled.

11.3 "Generalized Stacking" and "Deep" Structures for
Prediction

Suppose that M predictors f̂1, f̂2, . . . , f̂M (all based on the same training data)
are available. We might call them together an "ensemble" of predictors and
hope to make from them a single predictor that is more effective than any of
the constituents. We have just said that for SEL prediction a linear combi-
nation of these (a "stacked" predictor) is one way of making such a predictor.
We have also said that for 0-1 loss classification, combining multiple classifiers
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through a tree-based function of their voting functions seems likely to be gen-
erally practically effective.34 Here we consider the general problem "predictor
combination." The primary contribution it potentially offers is reduction of
model bias by adding flexibility not provided by any individual f̂m.
One important way to view the stacked SEL predictor

w0 +

M∑
m=1

wmf̂m (x) (114)

is as a linear predictor based on M new "features" that are the values of the
ensemble. That suggests applying some standard predictor methodology to a
"training set" consisting of M vectors of predictions ... with or without some or
all of the original input variables also reused as inputs. The generalization of
ordinary stacking is

f̃ (x) = f̂
(
f̂1 (x) , f̂2 (x) , . . . , f̂M (x) ,x

)
(115)

for some appropriate prediction algorithm f̂ . As this is more general than
ordinary stacking, it has the potential to be even more effective than a linear
combination of the M predictors could be in SEL problems and is applicable to
other prediction problems.
(Generalized) Stacking is a big deal. From the earliest of the public

predictive analytics contests (the Netflix Prize contest run 2006-2009) it has
been common for winning predictions to be made by "end-of-game" merging of
effort by two or more separate teams that in some way combine their separate
predictions. More and more references are made on contest forums to various
strategies for combining basic predictors. Multiple-level versions of the stacking
structure are even discussed.35

While the success of some (?luckiest among a number of?) ad hoc choices
of generalized stacking forms in particular situations is undeniable, principled
choices of forms and parameters for f̂ (and indeed f̂1, f̂2, . . . , f̂M ) in display
(115) involve both logical subtleties and huge computational demands. As
always, cross-validation (or perhaps its OOB relative in the event that bagging
is involved) is the only sound basis of these choices (and subsequent assessment
of the implications of the choices).
Consider first a version of this problem where associated with each f̂m and

with the top-level form f̂ are grids of possible values of parameters and a (po-
tentially huge) product grid is searched for a best cross-validation error (and
ultimately the optimizing parameter vector is applied to make the pick-the-
winner meta-predictor (115)). For each (vector) element of the product grid,
a cross-validation error is created by holding out folds and fitting f̂ms and f̂
with the prescribed parameter values on the remainders and testing on the cor-
responding folds. This is a perfectly defensible strategy for choosing a version
34There is, unfortunately, a large and very confused "theoretical" literature on "classifier

fusion" mostly built around the ad hoc notion of combination via majority voting.
35 In truth, they are but structured versions of the general form (115)
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of predictor form (115). But notice that exactly as discussed in Section 1.3.7,
the "winning" cross-validation error is not an honest indicator of the likely per-
formance of the grid point/predictor ultimately chosen. In order to honestly
estimate Err for the prediction methodology employed, one must cross-validate
the whole process. In each of K remainders one would need to make grids and
cross-validation errors for each grid point and pick a winner to predict on the
corresponding fold in order to produce a cross-validation error for the pick-the-
winner strategy. This implies a large computational load (especially if repeated
cross-validation is done) in order to choose a final version of super-learner for
application and assess the effectiveness of the process that produced it.
A second version of this scenario might pertain where ultimately individually-

"optimized" (perhaps by cross-validation across some grid of parameter values
for each m) versions of the f̂ms will be combined into a form (115) and choice of
complexity parameters for f̂ then made by applying another subsequent "cross-
validation," treating the chosen forms for the f̂m as fixed. The only way to
assess the potential performance of this way of predicting is to do it (K times)
on K folds and remainders. That is, within each of K remainders the whole
sequence of choosing parameters for the f̂ms and subsequently for the f̂ must
be repeated (by making K folds and remainders within each remainder ...
surely leading to different "best" vectors of parameters for each fold) and applied
to the corresponding fold to finally get a cross-validation error.
In both of these scenarios, it is clear that computation grows rapidly with

the complexity of constituent predictor forms, the breath of the optimization
desired, and the extent to which repetition of cross-validation is used.
What kind of top-level f̂ should be used in predictor form (115) could be

investigated by comparison of cross-validation errors. The linear form (114) is
most common and (at least in its ad hoc application) famously successful. But
there is a very good case to be made that a random forest form has potential to
be at least as effective in this role. Its invariance to scale of its inputs (inherited
from its tree-based heritage) and wide success and reputation as an all-purpose
tool make it a natural candidate.
Neural networks have the kind of "(potentially repeated) composition of mul-

tiple functions of the input vector" character evident in the form (115). That
realization perhaps motivates consideration of versions of generalized stacking
where the ensemble of predictors f̂1, f̂2, . . . , f̂M itself has some specific kind of
"neural-network-like" structure behind it. Figure 30 is a graphical representa-
tion of what is possible.
It is not at all obvious whether a neural-network-like structure for an ensem-

ble of predictors in generalized stacking is necessarily helpful in practical pre-
diction problems. The folklore in predictive analytics is that ordinary stacking
is most helpful where elements of an ensemble have small correlations. (Obvi-
ously, if they are perfectly correlated no advantage can be gained by "combin-
ing" them.) How that folklore interacts with the current popularity of "deep
learning" methods is unclear. One thing that is clear is that unthinking prolif-
eration of "layers" in development of a predictor where they really add nothing
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Figure 30: An L-layer structure for prediction based on x.

to the empirical approximation of an optimal predictor can only exacerbate the
computational problems of cross-validation and facilitate unwitting overfitting.

11.4 Boosting/Successive Approximation

11.4.1 SEL Boosting

A different line of thinking that leads to the use of weighted linear combinations
of predictors is called boosting. The original classification version of the idea
produces the famous "AdaBoost.M1" method discussed in Section 11.4.4. This
methodology is really just an instance of the basic numerical analysis notion of
successive approximation to find a solution to an equation or an optimizer
of a functional.
There is general gradient boosting. But we begin with the SEL special

case, because this version is both particularly easy to understand and explain
and of high practical value. The basic idea is to repeatedly try to improve
an approximator for E[y|x] by successively adding small corrections (based on
modeling current residuals) to current approximators.
SEL boosting begins with some predictor f̂0 (x) (like, e.g., f̂0 (x) = ȳ). With

an iterate f̂m−1 (x) in hand, one fits some SEL predictor, say êm (x), to the N

"data pairs"
(
xi, yi − f̂m−1 (xi)

)
consisting of inputs and current residuals.

(Typically, some very simple/crude/non-complex "base predictor" form is used
for êm.) Then, for some "learning rate" ν ∈ (0, 1), one sets

f̂m (x) = f̂m−1 (x) + νêm (x)

One iterates on m through some number of iterations, M (possibly chosen by
cross-validation). Commonly quoted choices for ν are numbers like .01 and the
smaller is ν, the larger must be M . (Note that ν could be allowed to depend
upon m, in which case notation like νm would be appropriate above.)
SEL boosting successively corrects a current predictor by adding to it some

small fraction of a predictor for its residuals. The value ν functions as a com-
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plexity or regularizing parameter, as does M . Small ν and large M correspond
to large complexity. The boosting notion is different in spirit from stacking or
model averaging, but like them ends with a linear combination of fitted forms
as a final predictor/approximator for E[y|x].

This kind of sequential modification of a predictor is not discussed in or-
dinary regression/linear models courses because if a base predictor is an OLS
predictor for a fixed linear model, corrections to an initial fit based on this same
model fit to residuals will predict that all residuals are 0. In this circumstance
boosting does nothing to change or improve an initial OLS fit.

11.4.2 General "Gradient Boosting"

Now consider approximate empirical optimization (over choice of real-valued
function g) of

EL (g (x) , y)

through (successive approximation) search for predictor f̂ that optimizes

N∑
i=1

L
(
f̂ (xi) , yi

)
= N · err (116)

One begins with some predictor f̂0 (x) (like, e.g., f̂0 (x) = arg min
ŷ

∑N
i=1 L (ŷ, yi)).

With an iterate f̂m−1 (x) in hand, one then might consider how to improve the

current total training set loss
∑N
i=1 L

(
f̂m−1 (xi) , yi

)
. Let

ỹim = − ∂

∂ŷ
L (ŷ, yi)

∣∣∣∣
ŷ=f̂m−1(xi)

(117)

These values are the elements of the negative gradient of total loss with respect
to the current predictions for the training set. Ideally, one would like to correct
f̂m−1 (x) in a way that moves each prediction of a training output f̂m−1 (xi)
by more or less a common multiple of ỹim. To that end, one fits some SEL
predictor, say êm (x), to "data pairs" (xi, ỹim). (As in the special case of
SEL boosting, typically some very simple/crude/non-complex form of "base
predictor" is used for êm.) Let ρm > 0 (controlling the "step-size" in modifying
f̂m−1 (x)) stand for a multiplier for êm (x) such that

N∑
i=1

L
(
f̂m−1 (xi) + ρmêm (xi) , yi

)
is small (ideally, minimum). (Unless an analytical formula for an optimal ρm
is obvious, some kind of numerical line search is implicit in the good choice of
ρm.)
Then, for some "learning rate" ν ∈ (0, 1), one sets

f̂m (x) = f̂m−1 (x) + νρmêm (x) (118)
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as an approximate "steepest descent" correction. Of course, other criteria
besides SEL (like AEL) could be used in fitting êm (x) and ν could be allowed
to change with m.
The development here allows for arbitrary base predictors. But for good rea-

sons (especially the fact that trees are invariant to monotone transformations of
coordinates of x) the functions êm are often rectangle-based (and even restricted
to single-split-trees in the case of AdaBoost.M1). If a tree-building algorithm
for approximating the values (117) produces a set of non-overlapping rectan-
gles R1, R2, . . . , RL that cover the input space, rather than using for êm (x) in
rectangle Rl some average of the values ỹim for training cases with xi ∈ Rl, it
makes more sense to use

êm (x) = arg min
c

∑
i s.t. xi∈Rl

L
(
f̂m−1 (xi) + c, yi

)
for x ∈ Rl (119)

and ρm = 1 and this is the form typically used in gradient boosting with trees.
Update form (119) relies upon 1-dimensional optimizations of a sum of losses

for training inputs in L tree-generated rectangles. Another way this idea can
be used is with rectangles formed based on values of sub-vectors of x with finite
numbers of possible values. That is, consider again the context of Section 1.4.2.
For a given choice of D categorical, ordinal, or finite-discrete coordinates of x
defining the sub-vector x̌, consider using

êm (x) = arg min
c

∑
i s.t. x̌i=x̌

L
(
f̂m−1 (xi) + c, yi

)
for x with x̌i = x̌

and ρm = 1. This êm (x) has only a finite number of possible values, one
corresponding to each of the sets {i|x̌i = x̌}. Further, in contexts where there
are a number of potential choices of such sets of discrete coordinates of x, the
total losses after update (118) can be compared to choose a good sub-vector x̌
to use to produce f̂m.

SEL We had a first look at SEL boosting in Section 11.4.1. To establish that it
is a version of gradient boosting, simply suppose now that L (ŷ, y) = 1

2 (ŷ − y)
2.

Then

ỹim = − ∂

∂ŷ

(
1

2
(ŷ − yi)2

)∣∣∣∣
ŷ=fm−1(xi)

= yi − f̂m−1 (xi)

and for SEL the general gradient boosting corrections are indeed based on the
prediction of ordinary residuals.

AEL (and Binary Regression Trees) Suppose now that L (ŷ, y) = |ŷ − y| .
Then, beginning from f̂0 (x) (say f̂0 (x) = median {yi}),

ỹim = − ∂

∂ŷ
(|ŷ − yi|)

∣∣∣∣
ŷ=f̂m−1(xi)

= sign
(
yi − f̂m−1 (xi)

)
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So the gradient boosting update step is "fit a SEL predictor for ±1s coding the
signs of the residuals from the previous iteration." In the event that the base
predictors are regression trees, the êm (x) in a rectangle will be a median of ±1s
coming from signs of residuals for cases with xi in the rectangle (and thus have
value either −1 or 1, constant on the rectangle).

Standard Voting Functions for 2-Class Classification Referring again
to the development in Section 1.5.3, recall that approximation to optimal voting
functions g (x) can produce approximately optimal 2-class classifiers sign(g (x)).
Then consider h1 (u) = ln (1 + exp (−u)) / ln (2) and the loss

L (g (x) , y) = h1 (yg (x)) = ln (1 + exp (−yg (x))) / ln (2)

For this situation

ỹim = − ∂

∂ŷ
(ln (1 + exp (−yiŷ)) / ln (2))

∣∣∣∣
ŷ=f̂m−1(xi)

=
1

ln 2

 f̂m−1 (xi) exp (−yiŷi)
1 + exp

(
−yif̂m−1 (xi)

)


and corresponding boosting can be expected to produce a voting function ap-
proximating

g∗ (x) = ln

(
P [y = 1|x]

P [y = −1|x]

)
For the exponential function h2 (u) = exp (−u) and loss L (g (x) , y) =

h2 (yg (x)) one has

ỹim = − ∂

∂ŷ
exp (−yiŷ)

∣∣∣∣
ŷ=f̂m−1(xi)

= yi exp
(
−yif̂m−1 (xi)

)
and corresponding boosting produces a voting function approximating 1

2g
∗ (x)

(for g∗ (x) above). (For the choice of base predictors as single-split trees,
gradient boosting would be an approximate version of the famous AdaBoost.M1
algorithm.)
Finally, for the hinge function h3 (u) = (1− u)+ and loss L (g (x) , y) =

h3 (yg (x)), one gets

ỹim = − ∂

∂ŷ
(1− yiŷ)+

∣∣∣∣
ŷ=f̂m−1(xi)

= yiI
[
yif̂m−1 (xi) < 1

]
and corresponding boosting produces a voting function approximating the op-
timal classifier directly.

K-Class Classification Models We noted in Section 1.3.2 that in a K-class
classification model, under the cross-entropy loss L (ŷ, y) = −

∑K
k=1 I [y = k] ln (ŷk),

for non-negative y1, y2, . . . , yK summing to 1, predictors

fk (x) = P [y = k|x]
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are optimal and can be used to produce optimal 0-1 loss classifiers. Consider
boosting to produce approximations to f1 (x) , f2 (x) , . . . , fK−1 (x). Begin with
K− 1 positive predictors f̂10 (x) , f̂20 (x) , . . . , f̂(K−1)0 (x) with

∑K−1
k=1 f̂k0 (x) <

1. (For example, f̂k0 (x) = 1/K will serve.) Then for ŷ1, ŷ2, . . . , ŷK−1 positive
with sum less than 1, with

L (ŷ, y) = −
K−1∑
k=1

I [y = k] ln (ŷk)− I [y = K] ln

(
1−

K−1∑
k=1

ŷk

)

let (for k = 1, 2, . . . ,K − 1)

ỹikm = − ∂

∂ŷk
L (ŷ, yi)

∣∣∣∣
ŷk=f̂m−1(xi)

= I [yi = k]
1

f̂k(m−1) (xi)
− I [yi = K]

1

1−
∑K−1
k=1 f̂k(m−1) (xi)

For each k fit some SEL predictor, say êkm (x), to pairs (xi, ỹikm) and for an
appropriate νm > 0 set

f̂km (x) = f̂k(m−1) (x) + νmêkm (x)

(νm will need to be chosen to be small enough that all f̂1m (x) , f̂2m (x) , . . . , f̂(K−1)m (x)
remain positive with sum less than 1.)

11.4.3 Some Issues Related to Boosting Practice

Here we consider several issues that arise in the use of boosting. These mostly
concern control of complexity of predictors in boosting.
Where trees are used to create the functions êm, there is the question of how

large they should be allowed to grow. The answer seems to be "Not too large,
maybe to about 6 or so terminal nodes." Another (probably better) approach
to this question would seem to be to grow large trees and then employ cost-
complexity pruning, ultimately using cross-validation to choose a value for the
weight α (or λ = 1/α).
There is always question of the number of boosting steps, M , that should

be employed. This can/should be limited in size (very large values surely
producing overfit). Holding back a part of the training sample and watching
performance of a predictor on that single test set as M increases is a possible
crude method of choosing M . Presumably, cross-validation provides a more
reliable means of directing choice of M.
"Shrinkage" also impacts final boosted predictor complexity. In choosing

ν ∈ (0, 1) for use in update (118) one chooses a multiplier of êm (x) strictly less
than one that minimizes the updated total loss. That is,. one doesn’t make
the "full correction" to f̂m−1 in producing f̂m. The smaller is this parameter
the larger will be M needed for good predictor performance. One might well
choose both ν and M via cross-validation.
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"Subsampling" or "stochastic boosting" is the practice of at each iteration
of boosting, instead of choosing an update based on the whole training set,
choosing a fraction η of the training set at random and fitting to it (using a
new random selection at each update). This reduces computation time per
iteration and can also improve predictor performance (primarily by reducing
overfit?). Once more, cross-validation can inform the choice of η.
A very popular implementation of gradient boosting goes by the name "XGBoost"

(for "eXtreme Gradient Boosting"). This is an R package (with similar imple-
mentations in other systems) that provides a lot of flexibility and code that is
very fast to run (even providing parallelization where hardware supports it).
The caret package can be used to do cross-validation based on XGBoost, allow-
ing one to tune on a number of algorithm complexity parameters.

11.4.4 AdaBoost.M1

Consider a 2-class 0-1 loss classification problem with −1/1 coding of output y
(y takes values in G = {−1, 1}). The AdaBoost.M1 algorithm is an exact variant
of the (approximate) gradient boosting algorithm, but is usually described in
other terms. We describe those terms next, and then make the connection to
general boosting.
The standard/original description of the AdaBoost.M1 algorithm is as fol-

lows.

1. Initialize weights on training data (xi, yi) at

wi1 ≡
1

N
for i = 1, 2, . . . , N

2. Fit a G-valued "stump" (single-split tree/single cut on a single coordinate
of x) predictor/classifier g1 to the training data to optimize

N∑
i=1

I [yi 6= g (xi)]

let

err1 =
1

N

N∑
i=1

I [yi 6= g1 (xi)]

and define

α1 = ln

(
1− err1
err1

)
3. Set new weights on the training data

wi2 =
1

N
exp (α1I [yi 6= g1 (xi)]) for i = 1, 2, . . . , N

(This up-weights misclassified observations by a factor of (1− err1) /err1).)
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4. For m = 2, 3, . . . ,M

(a) Fit a G-valued stump predictor/classifier gm to the training data to
optimize

N∑
i=1

wimI [yi 6= g (xi)]

(b) Let

errm =

∑N
i=1 wimI [yi 6= gm (xi)]∑N

i=1 wim

(c) Set

αm = ln

(
1− errm
errm

)
(d) Update weights as

wi(m+1) = wim exp (αmI [yi 6= gm (xi)])

= wim

(
I [yi = gm (xi)] +

1− errm
errm

I [yi 6= gm (xi)]

)
for i = 1, 2, . . . , N . (This up-weights misclassified observations by a
factor of (1− errm) /errm).)

5. Output a voting function

M∑
m=1

αmgm (x)

(based on "weighted voting" by the classifiers gm) for an AdaBoost.M1
classifier

f̂M (x) = sign

(
M∑
m=1

αmgm (x)

)
(Classifiers gm with small errm get big positive weights in the final "vot-
ing.")

Figure 31 is a graphic of a small (N = 16) fake p = 2 dataset and (single
line) boundaries ofM = 7 successive "stumps" used to develop an AdaBoost.M1
classifier with 0 training error rate. (Arrows point in the direction of y = +1
decisions.) Corresponding classifiers are portrayed in Figure 32.
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Figure 31: M = 7 consecutive AdaBoost.M1 cuts for a small fake data set.

AdaBoost.M1 as an Instance of General Boosting The AdaBoost.M1
algorithm is equivalent to an instance of general boosting for a voting function,
based on the exponential loss function h2 (v) ≡ exp (−v) of Section 1.5.3. The
argument is as follows. Take g1 = 1

2 f̂1 for f̂1 as in the traditional description
of AdaBoost.M1 to serve as an initial voting function to be improved through a
series of boosting steps. Suppose that iterate gm−1 is in hand and one desires
to improve (reduce) the total training loss

N∑
i=1

exp (−yigm−1 (xi))

by an update of voting function gm−1 to

gm (x) = gm−1 (x) + γmêm (x) (120)

where êm is an appropriate stump classifier ("a single split tree" classifier) and
γm is (without loss of generality) a positive constant.

150



Figure 32: Classifiers corresponding to the voting functions from the cuts indi-
cated in Figure 31.

The total training loss associated with the iterate (120) is

N∑
i=1

exp [−yi (gm−1 (xi) + γmêm (xi))]

=

N∑
i=1

exp (−yigm−1 (xi)) exp (−yiγmêm (xi))

=
∑
i s.t.

yi 6=êm(xi)

exp (−yigm−1 (xi)) exp (γm) +
∑
i s.t.

yi=êm(xi)

exp (−yigm−1 (xi)) exp (−γm)

= (exp (γm)− exp (−γm))
∑
i s.t.

yi 6=êm(xi)

exp (−yigm−1 (xi))

+ exp (−γm)
∑
i

exp (−yigm−1 (xi))

So, whatever be the positive value of γm, êm (x) should be chosen to minimize
the 0-1 loss error rate for a single cut classifier for cases weighted proportional
to values exp (−yigm−1 (xi)).
Consider then choice of γm. The derivative of the total training loss with

respect to γm is∑
i s.t.

yi 6=êm(xi)

exp (−yigm−1 (xi)) exp (γm)−
∑
i s.t.

yi=êm(xi)

exp (−yigm−1 (xi)) exp (−γm)

This is 0 when

exp (2γm) =

∑
i s.t.

yi=êm(xi)
exp (−yigm−1 (xi))∑

i s.t.
yi 6=êm(xi)

exp (−yigm−1 (xi))
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That is, an optimal γm is

γm =
1

2
ln

∑ i s.t.
yi=êm(xi)

exp (−yigm−1 (xi))∑
i s.t.

yi 6=êm(xi)
exp (−yigm−1 (xi))


=

1

2
ln

(
1− rm
rm

)
for

rm =

∑
i s.t.

yi 6=êm(xi)
exp (−yigm−1 (xi))∑N

i=1 exp (−yigm−1 (xi))

which is the 0-1 loss error rate for the classifier êm where weights on points in
a training set are proportional to exp (−yigm−1 (xi)).

Notice then that the ratios of the weights at stages m− 1 and m satisfy

exp (−yigm (xi))

exp (−yigm−1 (xi))

=
exp (−yi (gm−1 (xi) + γmêm (xi)))

exp (−yigm−1 (xi))

= exp (−yiγmêm (xi))

= exp

(
−1

2
ln

(
1− rm
rm

))
I [êm (xi) = yi] + exp

(
1

2
ln

(
1− rm
rm

))
I [êm (xi) 6= yi]

=

(
1− rm
rm

)−1/2
I [êm (xi) = yi] +

(
1− rm
rm

)1/2
I [êm (xi) 6= yi]

=

(
1− rm
rm

)−1/2 [
I [êm (xi) = yi] +

(
1− rm
rm

)
I [êm (xi) 6= yi]

]
Since rm doesn’t depend upon i, looking across i this is proportional to a ra-
tio of 1 for cases with I [êm (xi) = yi] and ratio (1− rm) /rm for cases with
I [êm (xi) = yi]. That is (recalling the meaning of rm) the ratios of weights for
a given case in this development are completely equivalent to those produced by
the updating prescribed in 4(d) of the standard description of AdaBoost.M1.
Ultimately then, all of this taken together establishes that this ("exact"

as opposed to "gradient") boosting development produces an mth iterate of
a voting function exactly half of that produced through m iterations of the
standard development of AdaBoost.M1. Since the factor of 1

2 is irrelevant
to the sign of the voting function, the corresponding classifier is exactly the
AdaBoost.M1 classifier.

11.5 Quinlan’s Cubist and "Divide and Conquer" Strate-
gies

There is a line of algorithms associated with Ross Quinlan (including "Cubist"
and "C5.0," the former being a SEL prediction methodology and the latter a
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classifier). His company web site is https://www.rulequest.com/index.html.
His algorithms are very complicated, and complete descriptions do not seem to
be publicly available. (Though there are open source versions of some of his
algorithms, much of his work seems to be proprietary and commercial versions
of his software are no doubt more reliable than the open source versions.) Text-
book descriptions of his methods are generally vague. Probably the best ones
I know of are in the KJ book.
The basic notion of Cubist seems to be to cut up an input space, <p, into

rectangles and fit a (different) linear predictor for y in each rectangle. Consider
the rectangle

R = {x| a1 < x1 < b1, a2 < x2 < b2, . . . , ap < xp < bp}

where aj and bj can be finite or infinite. Where at least one of aj or bj is finite,
a split on the input space has been made on coordinate j. Jargon typically
used in describing these methods is that if one lists only rectangles where one
or both of the aj or bj are finite, one has specified a "rule."

There are many implementation choices (the consequences of which are not
transparent) that (much as with MARS) amount to a kind of "special sauce"
owned by Quinlan and/or others who have followed him. Vague expositions
of Cubist leave most users to treat SEL prediction based on it as a mysterious
(albeit often effective) "black box."
Here are a few observations based on available information on Cubist for

SEL prediction.

1. Trees of regressions (not trees with constant predictions in each final
rectangle) seem to be at the heart of the methodology, both generating
rectangles and making predictions. The "error" used to guide node split-
ting seems to be

err ≡
∑
l

(
Nl
N

)√
MSEl

where l indexes rectangles, Nl is the number of cases with xi ∈ Rl and
MSEl is presumably from an OLS fit (of some linear model) in Rl.

2. Exactly what inputs xj are used in each rectangle and how they are chosen
is not clear. Output for an R implementation of Cubist lists different sets
for the various rectangles.

3. Exactly how one goes from tree building to the final set of rules/rectangles
is not clear. Software seems to not allow control of this. Perhaps there
is some kind of combining of final rectangles from a tree.

4. Some sort of "smoothing" is involved. This seems to be some kind of
averaging of regressions for bigger (containing) rectangles "up the tree
branch" from a final rectangle. What this should mean is not absolutely
clear if all one has is a set of "rules," particularly if there are cuts less
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extreme than a final pair defining Rl that have been eliminated from
description of Rl. For example

3 < x1 < 5

is
3 < x1 < 10 and 3 < x1 < 5

Further, the form of weights used in the averaging seems completely ad
hoc.

There are two serious modifications of the basic "tree of regressions" notion
that are included in the R implementation of Cubist:

1. One may employ "committees." This seems to be boosting or some-
thing much like it applied using the basic algorithm to create the correc-
tions to successive versions of an approximate E[y|x].

2. One may employ "instances." This seems to be (optionally) applied after
the boosting. It is shrinkage of ŷs in light of yis for k-nearest neighbors,
using weights depending upon the distances from x to the neighbors. For
k cases closest to x, say cases i1, i2, . . . , ik and corresponding weights
w1, w2, . . . , wk (summing to 1?) the prediction used for input x seems
from KJ to be36

ŷ (x) +
∑

wl (yil − ŷil)

A valuable general perspective that consideration of Quinlan’s specific meth-
ods brings up might be called a divide and conquer strategy. In prediction
problems where p is at all large, it is rare that one can find a simple form for
a predictor that is effective across the entirety of an input space. One way to
think about Quinlan’s methods is as breaking an input space up into appropriate
rectangles (defined by a tree structure) and then using primarily a (relatively
simple) linear prediction form inside each rectangle. Of course, "the devil is
in the details" of finding appropriate means of partitioning an input space and
then simple forms to use in each piece of the space, but the general notion of
solving several "local" prediction problems rather than a larger "global" one
is clearly one that will on occasion be very effective. For, example, in a case
where a few (say l) coordinates of an input vector x are binary, it may make
more sense to separately fit 2l predictors (one for each possible binary vector)
using the p− l non-binary inputs instead of trying to fit a single predictor using
the entire p-dimensional input.

36This is a guess at a "correction" of a formula on KJ page 210 that seems incorrect.
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Part III

Intermission: Perspective and
Prediction in Practice
There is more to say about theory and specific methodology for statistical ma-
chine learning, but this is a sensible point at which to pause and reflect on the
practice of prediction in "big data" contexts. Most of the best-known prediction
methods have been discussed (the notable exception being linear classification
methods and especially so-called support vector machines covered in the next
chapter) and the basic concerns to be faced have been raised. The careful
reader has what is needed in terms of statistical background to begin work
on a large prediction problem. So here we provide a bit of summary discus-
sion/perspective on beginning practice. (The material in the balance of these
notes can be studied in parallel with practice on a large real problem. It is my
belief that such practice grappling with the realities of prediction is essential to
genuine understanding of modern statistical machine learning.)
The graphic in Figure 33 is intended to provide some conceptualization of

what must be done to make predictions and honest judgments of how well they
are likely to work. The graphic is meant to indicate that a project proceeds
more or less left to right through it, but that actual practice is far too iterative
and flexible to be adequately represented by a flowchart.

Figure 33: Elements of effective "big data" prediction

One must first assemble a training set from whatever sources are appropriate.
Consistent with the "divide and conquer" discussion at the end of Section 11.5,
this training set could represent only a well-defined part of a large input space
and multiple graphics like Figure 33 in parallel would then in order. Note
that if a breakup of the input space depends upon the data cases available
(as in Quinlan’s methodologies, where rectangles used depend upon the set
of input vectors considered) that activity is best conceptualized as happening
inside the big cross-validation box, perhaps before several parallel versions of
what is presently Figure 33. The point is that the initial development of the
training set is the conceptual base upon which all else is built and (at least if
one is hoping to have reliable cross-validation results) a "random draws from a
fixed universe" model must be a plausible description of both the elements of
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the training set and additional "test" cases that are to be predicted.
Figure 33 puts "feature engineering" and "predictor fitting" activities inside

a large single activity box. These are typically spoken of as if they were distinct,
but they are largely indistinguishable/inseparable. (This is usually emphasized
quite strongly by fans of neural network prediction, where the process of devel-
oping weights for linear combinations deep in the compositional structure of the
predictor is often spoken of in terms of "learning good features" for prediction.)
The cross-validation box in Figure 33 encloses all but the assembling of the

training set. This is a reminder of the basic principle that all that will ultimately
be done to make a predictor must be done K times (on the K remainders) in
order to create a reliable assessment of the likely effectiveness of a prediction
methodology. Various "tuning" or "optimizing" steps based on some "cross-
validation error" or "OOB error" measures may be employed in the fitting of
a single one of multiple predictors in an ensemble, but only the kind of com-
prehensive "complete redoing" suggested by placing everything except training
set assembly inside the largest activity box will be adequate as an indication of
likely performance on new test cases.
Ultimately, producing good predictors in big real-world problems is a highly

creative and interesting pursuit. What is presented in these notes amounts to
a set of principles and building blocks that can be assembled in myriad ways.
The fun is in finding clever problem-specific ways to do the assembly that prove
to be practically effective.

Part IV

Supervised Learning II: More on
Classification and Additional
Theory
12 Basic Linear (and a Bit on Quadratic) Meth-

ods of Classification

Consider now methods of producing prediction/classification rules f̂ (x) taking

values in G = {1, 2, . . . ,K} that have sets
{
x ∈ <p|f̂ (x) = k

}
with boundaries

that are (mostly) defined by linear equalities

x′β = c (121)

The most obvious/naive potential method here is to regress K indicator vari-

ables yk = I
[
f̂ (x) = k

]
onto x (producing least squares regression vector coef-

156



ficients β̂k) and then to employ

f̂ (x) = arg max
k

f̂k (x) = arg max
k

x′β̂k

But this often fails miserably because of the possibility of "masking" if K > 2.
One must be smarter than this. Three kinds of smarter alternatives are Linear
(and Quadratic) Discriminant Analysis, Logistic Regression, and direct searches
for separating hyperplanes. The first two of these are "statistical" in origin with
long histories in the field.

12.1 Linear (and a bit on Quadratic) Discriminant Analy-
sis

Suppose that for (x, y) ∼ P , πk = P [y = k] and the conditional distribution of
x on <p given that y = k is MVNp (µk,Σ), i.e. the conditional pdf is

p (x|k) = (2π)
−p/2

(det Σ)
−1/2

exp

(
−1

2
(x− µk)

′
Σ−1 (x− µk)

)
Then it follows that

ln

(
P [y = k|x]

P [y = l|x]

)
= ln

(
πk
πl

)
− 1

2
µ′kΣ

−1µk +
1

2
µ′lΣ

−1µl + x′Σ−1 (µk − µl) (122)

so that a theoretically optimal classifier/decision rule is

f (x) = arg max
k

[
ln (πk)− 1

2
µ′kΣ

−1µk + x′Σ−1µk

]
and boundaries between regions in <p where f (x) = k and f (x) = l are subsets
of the sets{

x ∈ <p|x′Σ−1 (µk − µl) = − ln

(
πk
πl

)
+

1

2
µ′kΣ

−1µk −
1

2
µ′lΣ

−1µl

}
i.e. are defined by equalities of the form (121). Figure 34 illustrates this in a
simple K = 3 and p = 2 context where all πks are the same.
This is dependent upon all K conditional normal distributions having the

same covariance matrix, Σ. In the event these are allowed to vary, condi-
tional distribution k with covariance matrix Σk, a theoretically optimal predic-
tor/decision rule is

f (x) = arg max
k

[
ln (πk)− 1

2
ln (det Σk)−−1

2
(x− µk)

′
Σ−1k (x− µk)

]
and boundaries between regions in <p where f (x) = k and f (x) = l are subsets
of the sets

{x ∈ <p| 12 (x− µk)
′
Σ−1k (x− µk)− 1

2 (x− µl)
′
Σ−1l (x− µl) =

− ln
(
πk
πl

)
− 1

2 ln (det Σk) + 1
2 ln (det Σl)}
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Figure 34: Contours of K = 3 bivariate normal pdfs and corresponding linear
(equal class probability) classification boundaries.

Unless Σk = Σl this kind of set is a quadratic surface in <p, not a hyperplane.
One gets (not linear, but) Quadratic Discriminant Analysis.
Of course, in order to use LDA or QDA, one must estimate the vectors µk

and the covariance matrix Σ or matrices Σk from the training data. Estimating
K potentially different matricesΣk requires estimation of a very large number of
parameters. So thinking about QDA versus LDA, one is again in the situation
of needing to find the level of predictor complexity that a given dataset will
support. QDA is a more flexible/complex method than LDA, but using it in
preference to LDA increases the likelihood of overfit and poor prediction.
One idea that has been offered as a kind of continuous compromise between

LDA and QDA is for α ∈ (0, 1) to use

Σ̂k (α) = αΣ̂k + (1− α) Σ̂pooled

in place of Σ̂k in QDA. This kind of thinking even suggests as an estimate of
a covariance matrix common across k

Σ̂ (γ) = γΣ̂pooled + (1− γ) σ̂2I

for γ ∈ (0, 1) and σ̂2 an estimate of variance pooled across groups k and then
across coordinates xj of x in LDA. Combining these two ideas, one might even
invent a two-parameter set of fitted covariance matrices

Σ̂k (α, γ) = αΣ̂k + (1− α)
(
γΣ̂pooled + (1− γ) σ̂2I

)
for use in QDA. Employing these in LDA or QDA provides the flexibility
of choosing a complexity parameter or parameters and potentially improving
prediction performance.
The form x′β is (of course and by design) linear in the coordinates of x. An

obvious natural generalization of this discussion is to consider discriminants that

158



are linear in some (non-linear) functions of the coordinates of x. This is simply
choosing some M basis functions/transforms/features hm (x) and replacing the
p coordinates of x with theM coordinates of (h1 (x) , h2 (x) , . . . , hM (x)) in the
development of LDA.
Of course, upon choosing basis functions that are all coordinates, squares

of coordinates, and products of coordinates of x, one produces linear (in the
basis functions) discriminants that are general quadratic functions of x. The
possibilities opened here are myriad and (as always) "the devil is in the details."

12.1.1 Dimension Reduction in LDA

Where p is large, a common methodology in LDA is forward selection of coor-
dinates xj of x to use in classification. Cross-validation can be used to choose
a best number of coordinates and potentially achieve some dimension-reduction
and reduce overfitting.
Another idea in the direction of simplifying the interpretation of LDA by

dimension-reduction is use of "canonical coordinates" and intends to replace
"variable selection" with use of a hopefully few relevant linear combinations of
coordinates (producing "reduced rank LDA"). Let

µ̄ =
1

K

K∑
k=1

µk

and note that one is free to replace x and all K means µk with respectively

x∗ = Σ−1/2 (x− µ̄) and µ∗k = Σ−1/2 (µk − µ̄)

This produces

ln

(
P [y = k|x∗]
P [y = l|x∗]

)
= ln

(
πk
πl

)
− 1

2
‖x∗ − µ∗k‖

2
+

1

2
‖x∗ − µ∗l ‖

2

and (in "sphered" form) the theoretically optimal classifier can be described as

f (x) = arg max
k

[
ln (πk)− 1

2
‖x∗ − µ∗k‖

2

]
That is, in terms of x∗, optimal decisions are based on ordinary Euclidian
distances to the transformed means µ∗k. Further, this form can often be made
even simpler/be seen to depend upon a lower-dimensional (than p) distance.
The µ∗k typically span a subspace of <p of dimension min (p,K − 1). For

M
p×K

= (µ∗1,µ
∗
2, . . . ,µ

∗
K)

let PM be the p× p projection matrix projecting onto the column space ofM
in <p (C (M)). Then

‖x∗ − µ∗k‖
2

= ‖[PM + (I − PM )] (x∗ − µ∗k)‖2

= ‖(PMx∗ − µ∗k) + (I − PM )x∗‖2

= ‖PMx∗ − µ∗k‖
2

+ ‖(I − PM )x∗‖2
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the last equality coming because (PMx
∗ − µ∗k) ∈ C (M) and (I − PM )x∗ ∈

C (M)
⊥. Since ‖(I − PM )x∗‖2 doesn’t depend upon k, the theoretically

optimal predictor/decision rule can be described as

f (x) = arg max
k

[
ln (πk)− 1

2
‖PMx∗ − µ∗k‖

2

]
and theoretically optimal decision rules can be described in terms of the projec-
tion of x∗ onto C (M) and its distances to the µ∗k.

Now,
1

K
MM ′

is the (typically rank min (p,K − 1)) sample covariance matrix of the µ∗k and
has an eigen decomposition as

1

K
MM ′ = V DV ′

for
D = diag (d1, d2, . . . , dp)

where
d1 ≥ d2 ≥ · · · ≥ dp

are the eigenvalues and the columns of V are orthonormal eigenvectors corre-
sponding in order to the successively smaller eigenvalues of 1

KMM ′. These
vk with dk > 0 specify linear combinations of the coordinates of the µ∗l ,
〈vk,µ∗l 〉, with the largest possible sample variances subject to the constraints
that ‖v‖ = 1 and 〈vl,vk〉 = 0 for all l < k. These vk are perpendicular vectors
in successive directions of most important unaccounted-for spread of the µ∗k.

Then, for l ≤ rank
(
MM ′) define

V l = (v1,v2, . . . ,vl)

let
P l = V lV

′
l

be the matrix projecting onto C (V l) in <p. A possible "reduced rank" approx-
imation to the theoretically optimal LDA classification rule is

fl (x) = arg max
k

[
ln (πk)− 1

2
‖P lx

∗ − P lµ
∗
k‖
2

]
and l becomes a complexity parameter that one might optimize via cross-
validation to tune or regularize the method.
Note also that for w ∈ <p

P lw =

l∑
k=1

〈vk,w〉vk
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For purposes of graphical representation of what is going on in these computa-
tions, one might replace the p coordinates of x and the means µk with the l
coordinates of

(〈v1,x∗〉 , 〈v2,x∗〉 , . . . , 〈vl,x∗〉)′ (123)

and of the
(〈v1,µ∗k〉 , 〈v2,µ∗k〉 , . . . , 〈vl,µ∗k〉)

′ (124)

(that might be called "canonical coordinates"). It seems to be ordered pairs of
entries of these vectors that are plotted by HTF in their Figures 4.8 and 4.11.
In this regard, we need to point out that since any eigenvector vk could be
replaced by −vk without any fundamental effect in the above development, the
vector (123) and all of the vectors (124) could be altered by multiplication of
any particular set of coordinates by −1. (Whether a particular algorithm for
finding eigenvectors produces vk or −vk is not fundamental, and there seems
to be no standard convention in this regard.) It appears that the pictures in
HTF might have been made using the R function lda and its choice of signs for
eigenvectors.

12.2 Logistic Regression

A generalization of the MVN conditional distribution result (122) is an assump-
tion that for all k < K

ln

(
P [y = k|x]

P [y = K|x]

)
= βk0 + x′βk (125)

Here there are K − 1 constants βk0 and K − 1 p-vectors βk to be specified,
not necessarily tied to class mean vectors or a common within-class covariance
matrix for x. In fact, the set of relationships (125) do not fully specify a joint
distribution for (x, y). Rather, they only specify the nature of the conditional
distributions of y|x. (In this regard, the situation is exactly analogous to that
in ordinary simple linear regression. A bivariate normal distribution for (x, y)
gets one normal conditional distributions for y with a constant variance and
mean linear in x. But one may make those assumptions conditionally on x,
without assuming anything about the marginal distribution of x, that in the
bivariate normal model is univariate normal.)
Using θ as shorthand for a vector containing all the constants βk0 and the

vectors βk, the linear log probability ratio assumption (125) produces the forms

P [y = k|x] = pk (x,θ) =
exp (βk0 + x′βk)

1 +
∑K−1
k=1 exp (βk0 + x′βk)

(126)

for k < K, and

P [y = K|x] = pK (x,θ) =
1

1 +
∑K−1
k=1 exp (βk0 + x′βk)

(127)
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and a theoretically optimal (under 0-1 loss) predictor/classification rule is

f (x) = arg max
k

pk (x,θ)

As a bit of an aside, it is perhaps useful to see in forms (126) and (127) use
of the softmax function with linear combinations of the coordinates of x and
be reminded of the neural network discussion of Section 8.2. In that regard,
consider an extremely simple neural network for classification having no hidden
layers and all coeffi cients for the last output node set to 0. That is, with
no hidden layers, if in the notation of Section 8.3.1 the last column of A0 by
assumption contains only 0s (A0

K = 0), the corresponding "neural network" for
classification is exactly the K-class logistic regression model.

Figure 35 is a plot of three different p = 1 forms for p1 (x, β0, β1) in a K = 2
model. The parameter sets are

Red: β0 = 0, β1 = 1,
Blue: β0 = −4, β1 = 2, and
Green: β0 = −2, β1 = −2

In each case p1 (x, β0, β1) = .5 where x = −β0/β1, the function increases in x
exactly when β1 > 0, and curve steepness increases with |β1|.

Figure 35: Plot of three different p = 1 forms for p1 (x, β0, β1) in a K = 2 model.

In aK = 2 case with p = 2, (for its {1, 2} coding of y) the kind of relationship
pictured in Figure 36 holds. p1 (x, β0, β1, β2) defines an "s-shaped surface" that
is "steep" when coeffi cients β1, β2 have large absolute values, is constant on lines
β0+β1x1+β2x2 = c in <2, taking the value .5 on the line β0+β1x1+β2x2 = 0.
Assumption (125) generalizes the "mixture of MVNs" assumption of LDA,

and standard methods of fitting the corresponding parameters based on training
data are necessarily fundamentally different. That is (using maximum likeli-
hood) in LDA, the K probabilities πk, the K means µk, and the covariance
matrix Σ might be chosen to maximize the likelihood

N∏
i=1

πyip
(
xi|µyi ,Σ

)
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Figure 36: A plot of a p = 2 form for p1 (x, β0, β1) in a K = 2 model (with 1-2
coding).

This is a mixture model and the complete likelihood is involved, i.e. a joint
density for the N pairs (xi, yi). On the other hand, standard logistic regression
methodology maximizes

N∏
i=1

pyi (xi,θ) (128)

over choices of θ. This is not a full likelihood, but rather one conditional on
the xi observed.
In a K = 2 case with −1-1 coding for y, the logistic regression log-likelihood

has a very simple form. With

p−1 (x, β0,β) =
exp (β0 + x′β)

1 + exp (β0 + x′β)
and p1 (x, β0,β) =

1

1 + exp (β0 + x′β)

the likelihood term contributed to the product (128) by (xi, yi) is(
exp (β0 + x′iβ)

1 + exp (β0 + x′iβ)

)I [yi = −1](
1

1 + exp (β0 + x′iβ)

)I [yi = 1]

It then follows that the contribution of (xi, yi) to the log-likelihood is

I [yi = −1] (β0 + x′iβ)− ln (1 + exp (β0 + x′iβ))

= − ln (1 + exp (yi (β0 + x′iβ)))

(Note that this term is − (ln 2)h1 (yi (β0 + x′iβ)) for h1 the first of the function
"losses" considered in Section 1.5.3 in the discussion of voting functions in 2-
class classification.) So ultimately, the K = 2 log-likelihood (to be optimized
in ML fitting) is

−
N∑
i=1

ln (1 + exp (yi (β0 + x′iβ)))
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(which is − ln 2 times the total loss in the gradient boosting algorithm applied
to voting function g (x) = β0 + x′iβ).

A general alternative to maximum likelihood (useful in avoiding overfitting
for large N) is minimization of a criterion like

−ln
(

N∏
i=1

pyi (xi,θ)

)
+ penalty (θ)

For example, in the K = 2 case (with −1-1 coding) a lasso version is (for λ > 0
and 0 ≤ α ≤ 1) minimization of

N∑
i=1

ln (1 + exp (yi (β0 + x′iβ))) + λ

α p∑
j=1

|βj |+
(1− α)

2

p∑
j=1

β2j


(that can be accomplished in R using glmnet).
It is common to encounter situations where (say in a K = 2 context with

0-1 coding) π0 is quite small. Rather than trying to do analysis on a random
sample of (x, y) pairs where there would be relatively few y = 0 cases, there
are a number of potentially important practical reasons for doing analysis of a
dataset consisting of random sample of N0 instances ("cases") with y = 0 and a
random sample of N1 instances ("controls") with y = 1, where N0/ (N0 +N1)
is nowhere nearly as small as π0.37 (In fact, N1 on the order of 5 or 6 times
N0 is often recommended.)
For K = 2

ln

(
P [y = 0|x]

P [y = 1|x]

)
= ln

(
π0p (x|0)

π1p (x|1)

)
= ln

(
π0
π1

)
+ ln

(
p (x|0)

p (x|1)

)
So under the logistic regression assumption that

ln

(
P [y = 0|x]

P [y = 1|x]

)
= β0 + x′β

fitting to a case-control dataset should produce

β̂cc0 + x′β̂
cc ≈ ln

(
N0
N1

)
+ ln

(
p (x|0)

p (x|1)

)
= ln

(
P [y = 0|x]

P [y = 1|x]

)
+ ln

(
N0
N1

)
− ln

(
π0
π1

)
So (presuming that an estimate π̂0 is available) estimated coeffi cients

β̂0 ≡ β̂cc0 − ln

(
N0
N1

)
+ ln

(
π̂0

1− π̂0

)
and β̂ = β̂

cc

37Notice that this methodology purposely creates a situation like that described in Sec-
tion 1.5.1, where training set class relative frequencies are much different from actual class
probabilities.
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Figure 37: An example of a quadratic form (−.2x21− .3x22) used to make logistic
regression probabilities that y = 1 (for 1-2 coding)

are appropriate for the original context. (This result is a specialization of the
general formula (29) for shifting conditional probabilities for y|x based on use
of a training set with class frequencies different from the πks.)

Good logistic regression models are the basis of good classifiers when one
classifies according to the largest predicted probability. And just as the useful-
ness of LDA can be extended by consideration of transforms/features made from
an original p-dimensional x, the same is true for logistic regression. For ex-
ample, beginning with x1 and x2 and creating additional predictors x21, x

2
2, and

x1x2, one can use logistic regression technology based on the 5-dimensional in-
put

(
x1, x2, x

2
1, x

2
2, x1x2

)
to create classification boundaries that are quadratic

in terms of the original x1 and x2. An example of the kind of functional form
for the conditional probability that y = k given a bivariate input x that can
result is portrayed in Figure 37 where the quadratic form −.2x21 − .3x22 is used
to make logistic regression probabilities that y = 1 (for 1-2 coding). Constant-
probability contours of such a surface are ellipses in (x1, x2)-space.

12.3 Separating Hyperplanes

In the K = 2 group case now use the G = {−1, 1} coding. If there is a β ∈ <p
and real number β0 such that in the training data

y = 1 exactly when x′β + β0 > 0

a "separating hyperplane"

{x ∈ <p|x′β + β0 = 0}

can be found via logistic regression. The (conditional) likelihood will not have
a maximum, but if one follows a search path far enough toward the limiting
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value of 0 for the loglikelihood or 1 for the likelihood, satisfactory β ∈ <p and
β0 from an iteration of the search algorithm will produce separation.
A famous older algorithm for finding a separating hyperplane is the so-called

"perceptron" algorithm. It can be defined as follows. From some starting
points β0 and β00 cycle through the training data cases in order (repeatedly as
needed). At any iteration l, take{

βl = βl−1 and βl0 = βl−10

}
if
{

yi = 1 and x′iβ + β0 > 0, or
yi = −1 and x′iβ + β0 ≤ 0

}
{
βl = βl−1 + yixi
and βl0 = βl−10 + yi

}
otherwise

This will eventually identify a separating hyperplane when a series of N itera-
tions fails to change the values of β and β0.
If there is a separating hyperplane, it will typically not be unique. One

can attempt to define and search for "optimal" such hyperplanes that, e.g.,
maximize distance from the plane to the closest training vector. The material
on "support vector classifiers" in Section 13.1 is a famous development in this
direction.

13 Support Vector Machines

Consider a 2-class classification problem. For notational convenience, we’ll
suppose that output y takes values in G = {−1, 1}. Our present concern is in a
further development of linear classification methodology beyond that provided
in Section 12.
For β ∈ <p and β0 ∈ < we’ll consider the voting function

g (x) = x′β + β0 (129)

and a theoretical predictor/classifier

f (x) = sign (g (x)) (130)

We will approach the problem of choosing β and β0 to in some sense provide a
maximal cushion around a hyperplane separating between xi with corresponding
yi = −1 and xi with corresponding yi = 1.

13.1 The Linearly Separable Case: MaximumMargin Clas-
sifiers

In the case that there is a classifier of form (130) with 0 training error rate, we
consider the optimization problem

maximize
u with ‖u‖ = 1
and β0 ∈ <

M subject to yi (x′iu+ β0) ≥M ∀i (131)
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This can be thought of in terms of choosing a unit vector u (or direction) in <p so
that upon projecting the training input vectors xi onto the subspace of multiples
of u there is maximum separation between the convex hull of projections of the
xi with yi = −1 and the convex hull of projections of xi with corresponding
yi = 1. (The sign on u is chosen to give the latter larger x′iu than the former.)
If u and β0 solve this maximization problem the (maximum) margin is then

M =
1

2

 min
xi with
yi = 1

x′iu− max
xi with
yi = −1

x′iu


and the constant that makes the voting function (129) take the value 0 is

β0 = −1

2

 min
xi with
yi = 1

x′iu+ max
xi with
yi = −1

x′iu


The geometry of this formalism in a small p = 2 case is illustrated in Figure 38.

Figure 38: The geometry of maximum margin classification for a small p = 2
example.

For purposes of applying standard optimization theory and software, it is
useful to reformulate the basic problem (131) several ways. First, note that
optimization problem (131) may be rewritten as

maximize
u with ‖u‖ = 1
and β0 ∈ <

M subject to yi

(
x′i

( u
M

)
+
β0
M

)
≥ 1 ∀i (132)

Then if we let
β =

u

M
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it’s the case that
‖β‖ =

1

M
or M =

1

‖β‖
so that problem (132) can be rewritten

minimize
β ∈ <p
and β0 ∈ <

1

2
‖β‖2 subject to yi (x′iβ + β0) ≥ 1 ∀i (133)

This formulation (133) is that of a convex (quadratic criterion, linear inequality
constraints) optimization problem for which there exists standard theory and
algorithms.
The so-called primal functional corresponding to problem (133) is (for α ∈

<N )

FP (β, β0, α) ≡ 1

2
‖β‖2 −

N∑
i=1

αi (yi (x′iβ + β0)− 1) for α ≥ 0

To solve problem (133), one may for each α ≥ 0 choose (β (α) , β0 (α)) to
minimize FP (·, ·,α) and then choose α ≥ 0 to maximize FP (β (α) , β0 (α) ,α).
The Karush-Kuhn-Tucker conditions are necessary and suffi cient for solution
of a constrained optimization problem. In the present context they are the
gradient conditions

∂FP (β, β0,α)

∂β0
= −

N∑
i=1

αiyi = 0 (134)

and

∂FP (β, β0,α)

∂β
= β −

N∑
i=1

αiyixi = 0 (135)

the feasibility conditions

yi (x′iβ + β0)− 1 ≥ 0 ∀i (136)

the non-negativity conditions

α ≥ 0 (137)

and the orthogonality conditions

αi (yi (x′iβ + β0)− 1) = 0 ∀i (138)

Now relationships (134) and (135) are respectively

N∑
i=1

αiyi = 0 and β =

N∑
i=1

αiyixi ≡ β (α) (139)
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and plugging these into FP (β, β0,α) gives a function of α only

FD (α) ≡ 1

2
‖β (α)‖2 −

N∑
i=1

αi (yix
′
iβ (α)− 1)

=
1

2

∑
i

∑
j

αiαjyiyjx
′
ixj −

∑
i

∑
j

αiαjyiyjx
′
ixj +

∑
i

αi

=
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjx
′
ixj

= 1′α− 1

2
α′Hα

for
H
N×N

= (yiyjx
′
ixj) (140)

Then the "dual" problem for problem (133) is the N -dimensional optimization
problem

maximize
α∈<N

1′α− 1

2
α′Hα subject to α ≥ 0 and α′y = 0 (141)

and apparently this problem is easily solved.
Now condition (138) implies that if αopti > 0

yi
(
x′iβ

(
αopt

)
+ β0

(
αopt

))
= 1

so that

1. by condition (136) the corresponding xi has minimum x′iβ (αopt) for train-
ing vectors with yi = 1 or maximum x′iβ (αopt) for training vectors with
yi = −1 (so that xi is a support vector for the "slab" of thickness 2M
around a separating hyperplane),

2. β0 (αopt) may be determined using the corresponding xi from

yiβ0
(
αopt

)
= 1− yix′iβ

(
αopt

)
i.e. β0

(
αopt

)
= yi − x′iβ

(
αopt

)
(apparently for reasons of numerical stability it is common practice to
average values yi − x′iβ (αopt) for support vectors in order to evaluate
β0 (αopt)), and

3.

1 = yiβ0
(
αopt

)
+ yi

 N∑
j=1

αoptj yjxj

′ xi
= yiβ0

(
αopt

)
+

N∑
j=1

αoptj yjyix
′
jxi
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The fact (139) that β (α) ≡
∑N
i=1 αiyixi implies that only the training

cases with αi > 0 (typically corresponding to a relatively few support vectors)
determine the nature of the solution to this optimization problem. Further, for
SV the set indices of support vectors in the problem,∥∥β (αopt)∥∥2 =

∑
i∈SV

∑
j∈SV

αopti αoptj yiyjx
′
ixj

=
∑
i∈SV

αopti

∑
j∈SV

αoptj yiyjx
′
jxi

=
∑
i∈SV

αopti

(
1− yiβ0

(
αopt

))
=
∑
i∈SV

αopti

the next to last of these equalities following from 3. above, and the last following
from the gradient condition (134). Then the margin for this problem is simply

M =
1

‖β (αopt)‖ =
1√∑

i∈SV α
opt
i

(142)

13.2 The Linearly Non-separable Case: Support Vector
Classifiers

In a linearly non-separable case, the convex optimization problem (133) does
not have a solution (no pair β ∈ <p and β0 ∈ < provides yi (x′iβ + β0) ≥ 1 ∀i).
We might, therefore (in looking for good choices of β ∈ <p and β0 ∈ <) try to
relax the constraints of the problem slightly. That is, suppose that ξi ≥ 0 for
i = 1, 2, . . . , N and consider the set of constraints

yi (x′iβ + β0) + ξi ≥ 1 ∀i

(the ξi are called "slack" variables and provide some "wiggle room" in search
for a hyperplane that "nearly" separates the two classes with a good margin).
We might try to control the total amount of slack allowed by setting a bound

N∑
i=1

ξi ≤ C

for some positive C (a "budget").
Note that if yi (x′iβ + β0) ≥ 0, case i is correctly classified in the training

set, and so if for some pair β ∈ <p and β0 ∈ < this holds for all i, we have
a separable problem. So any non-separable problem must have at least one
negative yi (x′iβ + β0) for any β ∈ <p and β0 ∈ < pair. This in turn requires
that the budget C must be at least 1 for a non-separable problem to have
a solution even with the addition of slack variables. In fact, this reasoning
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implies that a budget C allows for at most C misclassifications in the training
set. And in a non-separable case, C must be allowed to be large enough so that
some choice of β ∈ <p and β0 ∈ < produces a classifier with training error rate
no larger than C/N .
In any event, we consider the optimization problem

minimize
β ∈ <p
and β0 ∈ <

1

2
‖β‖2 subject to

{
yi (x′iβ + β0) + ξi ≥ 1 ∀i

for some ξi ≥ 0 with
∑N
i=1 ξi ≤ C

(143)
that can be thought of as generalizing the problem (133). Problem (143) is
equivalent to

maximize
u with ‖u‖ = 1
and β0 ∈ <

M subject to
{

yi (x′iu+ β0) ≥M (1− ξi) ∀i
for some ξi ≥ 0 with

∑N
i=1 ξi ≤ C

generalizing the original problem (131). In this latter formulation, the ξi rep-
resent fractions (of the margin) that a corresponding xi is allowed to be on the
"wrong side" of its cushion around the classification boundary. ξi > 1 indicates
that not only does xi violate its cushion around the surface in <p defined by
x′u+ β0 = 0 but that the classifier misclassifies that case.
The ideas and notation of this development are illustrated in Figure 39 for

a small p = 2 problem.

Figure 39: A toy p = 2 example illustrating the notation used in non-separable
support vector optimization problem statements.

A more convenient version of form (143) is

minimize
β ∈ <p
and β0 ∈ <

1

2
‖β‖2 + C∗

N∑
i=1

ξi subject to
{
yi (x′iβ + β0) + ξi ≥ 1 ∀i

for some ξi ≥ 0

(144)
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A nice development on pages 376-378 of Izenman’s book provides the follow-
ing solution to this problem (144) parallel to the development in Section 13.1.
Generalizing problem (141) is the dual problem

maximize
α∈<N

1′α− 1

2
α′Hα subject to 0 ≤ α ≤ C∗1 and α′y = 0 (145)

for
H
N×N

= (yiyjx
′
ixj) (146)

The constraint 0 ≤ α ≤ C∗1 is known as a "box constraint" and the "feasible
region" prescribed in form (145) is the intersection of a hyperplane defined by
α′y = 0 and a "box" in the positive orthant. The C∗ = ∞ version of this
reduces to the "hard margin" separable case.
Upon solving problem (145) for αopt , the optimal β ∈ <p is of the form

β
(
αopt

)
=
∑
i∈SV

αopti yixi (147)

for SV the set of indices of support vectors xi which have αopti > 0. The
points with 0 < αopti < C∗ will lie on the edge of the margin (have ξi = 0) and
the ones with αopti = C∗ have ξi > 0. Any of the support vectors on the edge
of the margin (with 0 < αopti < C∗) may be used to solve for β0 ∈ < as

β0
(
αopt

)
= yi − x′iβ

(
αopt

)
(148)

and again, apparently for reasons of numerical stability it is common practice
to average values yi − x′iβ (αopt) for such support vectors in order to evaluate
β0 (αopt). And here (as in the "hard margin"/no slack case) the margin is
related to the coeffi cients as in display (142).
In this process the constant C∗ functions as a regularization/complexity

parameter and large C∗ in form (144) corresponds to small C in form (143).
Identification of a classifier requires only solution of the dual problem (145) and
then evaluation of the right hand sides of formulas (147) and (148) to produce
linear form (129) and classifier (130). Figure 40 illustrates two different support
vector classifiers for a small p = 2 problem.
Even when a problem is linearly separable, there may be good reason to use

the present formulation with C∗ <∞ (and a correspondingly larger margin and
more support vectors). Small C∗ (large C) corresponds to "low complexity"
in choice of a classifier and there are many support vectors contributing to the
ultimate form of the classifier. This makes the exact form of the classifier less
sensitive to a few key data cases than for large C∗. (If the problem were SEL
prediction rather than classification, small C∗ would be the "low variance/high
bias" case.) Cross-validation can be used in practice to choose an appropriate
value for C∗.
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Figure 40: Two support vector classifiers for a small p = 2 problem.

13.3 SVClassifiers and Kernels: Support VectorMachines

The form (129) is (of course and by design) linear in the coordinates of x. A
natural generalization of this development would be to consider forms that are
linear in some (non-linear) functions of the coordinates of x. There is nothing
really new or special to SV classifiers associated with this possibility if it is
applied by simply defining some basis functions hm (x) and considering form

g (x) =


h1 (x)
h2 (x)
...

hM (x)


′

β + β0

for use as a voting function in a classifier sign(g (x)). However, the fact that in
both linearly separable and linearly non-separable cases, optimal SV classifiers
depend upon the training input vectors xi only through their inner products
(see again displays (140) and (146)) and experience with computing abstract
inner produces in function spaces using kernel values suggests another way in
which one might employ linear forms of nonlinear functions in classification.

13.3.1 Heuristics

Let K be a non-negative definite kernel and consider the possibility of using
functions K (x,x1) ,K (x,x2) , . . . ,K (x,xN ) to build new (N -dimensional data-
dependent) feature vectors

k (x) =


K (x,x1)
K (x,x2)

...
K (x,xN )
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for any input vector x (including the xi in the training set) and rather than
defining inner products for new feature vectors (for input vectors x and z) in
terms of <N inner products

〈k (x) ,k (z)〉 = k (x)
′
k (z) =

N∑
k=1

K (x,xk)K (z,xk)

instead consider using the abstract space inner products of corresponding func-
tions

〈K (x, ·) ,K (z, ·)〉A = K (x, z)

Then, in place of definition (140) or (146) define

H
N×N

= (yiyjK (xi,xj)) (149)

and let αopt solve either problem (141) or (145). With

β
(
αopt

)
=

N∑
i=1

αopti yik (xi)

as in the developments of the previous sections, we replace the <N inner product
of β (αopt) and a feature vector k (x) with〈

N∑
i=1

αopti yiK (xi, ·) ,K (x, ·)
〉
A

=

N∑
i=1

αopti yi 〈K (xi, ·) ,K (x, ·)〉A

=

N∑
i=1

αopti yiK (x,xi)

Then for any i for which αopti > 0 (an index corresponding to a support feature
vector in this context) we set

β0
(
αopt

)
= yi −

N∑
j=1

αoptj yjK (xi,xj)

and have an empirical analogue of voting function (129) (for the kernel case)

ĝ (x) =

N∑
i=1

αopti yiK (x,xi) + β0
(
αopt

)
(150)

with corresponding classifier

f̂ (x) = sign (ĝ (x)) (151)

as an empirical analogue of classifier (130). It remains to argue that this
classifier (developed completely heuristically) has any kind of rational basis.
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13.3.2 A Penalized-Fitting Function-Space Optimization Argument

The heuristic argument for the use of kernels in the SVM context to produce
form (150) and classifier (151) is clever enough that some authors simply let
it stand on its own as "justification" for using "the kernel trick" of replacing
<N inner products of feature vectors with A inner products of basis functions.
Far more satisfying arguments can be made. One is based on an appeal to
optimality/regularization considerations provided in a 2002 Machine Learning
paper of Lin, Wahba, Zhang, and Lee.
Consider A, an abstract function space38 associated with the non-negative

definite kernel K, and the penalized fitting optimization problem involving the
"hinge loss" from Section 1.5.3,

minimize
g ∈ A

and β0 ∈ <

N∑
i=1

(1− yi (β0 + g (xi)))+ + λ
1

2
‖g‖2A (152)

Dividing the whole optimization criterion in display (152) (hinge loss plus con-
stant times squared A norm) by N , we see that an empirical version of the
expected hinge loss is involved, and can on the basis of the exposition in Sec-
tion 1.5.3 hope that an element g of A and value β0 will be identified in the
minimization so that β0 + g (x) is close to the voting function for the optimal
0-1 loss classifier and controls 0-1 loss error rate.
Further, recalling the form (143), the quantity (1− yi (x′iβ + β0))+ is the

fraction of the margin (M) that input xi violates its cushion around the classi-
fication boundary hyperplane. (Points on the "right" side of their cushion don’t
get penalized at all. Ones with (1− yi (x′iβ + β0))+ = 1 are on the classifica-
tion boundary. Ones with (1− yi (x′iβ + β0))+ > 1 are points misclassified by
the voting function.) The average of such terms is an average fraction (of the
margin) violation of the cushion and the optimization seeks to control this, and
so the loss really is related to the SV classification ideas.
Then, exactly as will be noted in Section 15, an optimizing g ∈ A above

must be of the form

gβ (x) =

N∑
j=1

βjK (x,xj)

= β′k (x)

so the minimization problem is

minimize
β ∈ <N

and β0 ∈ <

N∑
i=1

(
1− yi

(
β0 + β′k (xi)

))
+

+ λ
1

2

∥∥∥∥∥∥
N∑
j=1

βjK (x,xj)

∥∥∥∥∥∥
2

A

38To be technically precise, we are talking here about the "Reproducing Kernel Hilbert
Space" (RKHS) related to K. This an abstract function space A consisting of all linear
combinations of slices of the kernel, K (x, ·) and limits of such linear combinations.
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that is,

minimize
β ∈ <N

and β0 ∈ <

N∑
i=1

(
1− yi

(
β0 + β′k (xi)

))
+

+ λ
1

2
β′Kβ

for
K
N×N

= (K (xi,xj))

the Gram matrix first defined in display (21).
Now this is equivalent to the optimization problem

minimize
β ∈ <N

and β0 ∈ <

N∑
i=1

ξi + λ
1

2
β′Kβ subject to

{
yi
(
β′k (xi) + β0

)
+ ξi ≥ 1 ∀i

for some ξi ≥ 0

(153)
which for H

N×N
= (yiyjK (xi,xj)) as in (149) has dual problem of the form

maximize
α∈<N

1′η − 1

2λ
η′Hη subject to 0 ≤ η ≤ 1 and η′y = 0 (154)

or

maximize
α∈<N

1′α−1

2
α′
(

1

λ2
H

)
α subject to 0 ≤ α ≤ λ1 and α′y = 0 (155)

That is, the function space optimization problem (152) has a dual that is the
same as for problem (145) for the choice of C∗ = λ and kernel 1

λ2K (x, z)
produced by the heuristic argument in Section 13.3.1. Then, if ηopt is a solution
to (154), Lin et al. say that an optimal β ∈ <N is

1

λ
diag (y1, . . . , yN )ηopt

this producing coeffi cients to be applied to the functions K (·,xi). On the
other hand, the heuristic of Section 13.3.1 prescribes that for αopt the solution
to problem (155) coeffi cients in the vector

diag (y1, . . . , yN )αopt

get applied to the functions 1
λ2K (xi, ·). Upon recognizing that ηopt = 1

λα
opt

it becomes evident that for the choice of C∗ = λ and kernel 1
λ2K, the heuristic

in Section (13.3.1) produces a solution to the optimization problem (152).39

39Differently put, the "kernel trick" of Section (13.3.1) applied to kernel K with cost para-
meter C∗ solves the present optimization problem applied to kernel (C∗)2K with weighting
λ = C∗ in the problem (152).
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13.3.3 A Function-Space-Support-Vector-Classifier Geometry Argu-
ment

A different line of argument produces a SVM in a way that connects it to the
geometry of support vector classification in <p. The basic idea is to recognize
that one is mapping input feature vectors to an abstract function space A via
the mapping

T (x) (·) = K (x, ·)
and that everything subsequent to this mapping can be done fully honoring the
linear space structure. That is, the translation of the support vector classifier
argument should be in reference to the geometry of A. What one is really defin-
ing is a classifier with inputs in A. "Linear classification" in A is the analogue
of support vector classification in <p if one starts from a geometric motivation
like that of the support vector classifier development. One seeks a unit vector
(now in A) and a constant so that inner products of the (transformed) data
case inputs with the unit vector plus the constant, when multiplied by the yi,
maximize a margin subject to some relaxed constraints.
All this is writable in terms of A. That is, one wishes to

maximize
U ∈ A with ‖U‖A = 1

and β0 ∈ <

M

subject to
{
yi (〈T (xi) , U〉A + β0) ≥M (1− ξi) ∀i
for some ξi ≥ 0 with

∑N
i=1 ξi ≤ C

This is equivalent to the problem

minimize
V ∈ A

and β0 ∈ <

1

2
‖V ‖2A subject to

{
yi (〈T (xi) , V 〉A + β0) ≥ (1− ξi) ∀i
for some ξi ≥ 0 with

∑N
i=1 ξi ≤ C

Then either because optimization over all of A looks too hard, or because
some "Representer Theorem" says that it is enough to do so, one might back
off from optimization over A to optimization over the subspace of spanned by
the set of N elements T (xi). Then writing

V =

N∑
i=1

βiT (xi)

so that
1

2
‖V ‖2A =

1

2

N∑
i=1

N∑
j=1

βiβj 〈T (xi) , T (xj)〉A =
1

2
β′Kβ

(again, K is the Gram matrix) the optimization problem becomes

minimize
β ∈ <N

and β0 ∈ <

1

2
β′Kβ subject to

{
yi
(
β′Ki + β0

)
≥ (1− ξi) ∀i

for some ξi ≥ 0 with
∑N
i=1 ξi ≤ C
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where Ki is the ith column of the Gram matrix. For βopt and βopt0 solutions
to the optimization problem and

V opt =

N∑
i=1

βopti T (xi)

the voting function for the linear classifier in A is (for argument W ∈ A)〈
W,V opt

〉
A + βopt0

The corresponding voting function for the derived non-linear classifier on <p
is 〈

T (x) , V opt
〉
A + βopt0 =

N∑
i=1

βopti K (x,xi) + βopt0

and one has something very similar to the heuristic application of the "kernel
trick." The question is whether it is exactly equivalent to the use of "the trick."
The problem solved by βopt and βopt0 is equivalent for some λ ≥ 0 to

minimize
β ∈ <N

and β0 ∈ <

1

2
β′Kβ+ λ

N∑
i=1

ξ subject to
{
yi
(
β′Ki + β0

)
≥ (1− ξi) ∀i

for some ξi ≥ 0

(156)
Comparison of display (156) to display (153) and consideration of the argument
following statement (153) then shows that there is a choice of C∗ for which
when using kernel (1/C∗)

2K the heuristic/"kernel trick" method produces a
solution to the present function-space-support-vector-classifier problem. This
is the same circumstance as in the penalized fitting function space optimization
argument.40

13.3.4 Some Perspective on SVMs

The "kernelizing" of the support vector classifier methodology produces a wide
variety of possible classifiers that can be tuned (via cross-validation) over choice
of kernel (and any parameters it might have) and C∗ or C. As a toy example of
what can result from the technology, consider the situation portrayed in Figure

41 with voting functions based on kernels K (x, z) = exp
(
−γ (x− z)2

)
.

In view of the development here and in Section 1.5.3 what is pictured are
voting functions that are approximations to the optimal 0-1 loss classifier as

linear combinations of the N = 20 radial basis functions exp
(
−γ (x− xi)2

)
plus a constant. The γ = 100 pictures are understandably more wiggly than
the γ = 10 pictures because of the smaller "bandwidth" of the former basis

40The "kernel trick" of Section (13.3.1) applied to kernel K with cost parameter C∗ solves
the present geometric optimization problem applied to kernel (C∗)2K with cost parameter
C∗.
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Figure 41: 4 SVM voting functions for a small p = 1 example with N = 20
cases. Red bars on the rug correspond to y = −1 cases and blue bars
correpsond to y = 1 cases. Shown are voting functions based on kernels

K (x, z) = exp
(
−γ (x− z)2

)
. The black bars pointing down indicate support

"vectors."

functions. The C∗ = 1000 pictures are closer to being the "hard margin"
situation and have fewer training case errors in evidence.
Remember in all this, that SVMs built on a kernel K will choose voting

functions that are linear combinations of the functions K (xi, ·), slices of the
kernel at training case inputs. That fact controls what "shapes" are possible
for those voting functions. (In this regard, note that the kernel defined by
the ordinary Euclidean inner product, K (x, z) = 〈x, z〉, produces linear voting
functions and thus linear decision boundaries in <p and the special case of
ordinary support vector classifiers. It is sometimes called the "linear kernel.")
Finally, it is important to keep in mind that to the extent that SVMs produce

good voting functions, those must be equivalent to approximate likelihood ratios.
The discussion of Section 1.5.1 still stands.

13.4 Other Support Vector Methods

Several other issues related to the kind of arguments used in the development
of SV classifiers are discussed in HTF (and Izenman). One is the matter of
multi-class problems. That is, where G = {1, 2, . . . ,K} how might one employ
machinery of this kind? There are both heuristic and optimality-based methods
in the literature.
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A heuristic "one-versus-all" (OVA) strategy might be the following. Invent
2-class problems (K of them), the kth based on

yki =

{
1 if yi = k
−1 otherwise

Then for (a single) C∗ and k = 1, 2, . . . ,K solve the (possibly linearly non-
separable) 2-class optimization problems to produce functions ĝk (x) (that would
lead to one-versus-all) classifiers f̂k (x) = sign(ĝk (x)). A possible overall (OVA)
classifier is then

f̂ (x) = arg max
k∈G

ĝk (x)

A second heuristic strategy is to develop a voting scheme based on pair-
wise comparisons. That is, one might invent

(
K
2

)
problems of classifying class

l versus class m for l < m, choose a single C∗ and solve the (possibly lin-
early non-separable) 2-class optimization problems to produce voting functions
ĝlm (x) and corresponding classifiers f̂lm (x) = sign(ĝlm (x)). For m > l define
f̂ml (x) = −f̂lm (x) and define an overall "one-versus-one" (OVO) classifier by

f̂ (x) = arg max
k∈G

∑
m 6=k

f̂km (x)


or, equivalently

f̂ (x) = arg max
k∈G

∑
m 6=k

I
[
f̂km (x) = 1

]
In addition to these fairly ad hoc methods of extending 2-class SVM tech-

nology to K-class problems, there are developments that directly address the
problem (from an overall optimization point of view). Pages 391-397 of Izen-
man provide a nice summary of a 2004 paper of Lee, Lin, and Wabha in this
direction.
Another type of question related to the support vector material is the ex-

tent to which similar methods might be relevant in regression-type prediction
problems. As a matter of fact, there are loss functions alternative to squared
error or absolute error that lead naturally to the use of the kind of technology
needed to produce the SV classifiers. That is, one might consider so called "ε
insensitive" losses for prediction like

Lε1 (ŷ, y) = max (0, |y − ŷ| − ε)

or
Lε2 (ŷ, y) = max

(
0, (y − ŷ)

2 − ε
)

and be led to the kind of optimization methods employed in the SVM classifi-
cation context. See Izenman pages 398-401 in this regard.
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14 Prototype and (More on) Nearest Neighbor
Methods of Classification

We saw when looking at "linear" methods of classification in Section 12 that
these can reduce to classification to the class with fitted mean "closest" in some
appropriate sense to an input vector x. A related notion is to represent classes
each by several "prototype" vectors of inputs, and to classify to the class with
closest prototype. In this section we have these and related nearest neighbor
classifiers in view.
So consider a K-class classification problem (where y takes values in G =

{1, 2, . . . ,K}) and suppose that the coordinates of input x have been standard-
ized according to training means and standard deviations.
For each class k = 1, 2, . . . ,K, represent the class by prototypes

zk1, zk2, . . . ,zkR

belonging to <p and consider a classifier/predictor of the form

f (x) = arg min
k

min
l
‖x− zkl‖

(that is, one classifies to the class that has a prototype closest to x).
The most obvious question in using such a rule is "How does one choose the

prototypes?" One standard (admittedly ad hoc, but not unreasonable) method
is to use the so-called "K-means (clustering) algorithm" (see Section 17.2.1) one
class at a time. (The "K" in the name of this algorithm has nothing to do with
the number of classes in the present context. In fact, here the "K" naming
the clustering algorithm is our present R, the number of prototypes used per
class. And the point in applying the algorithm is not so much to see exactly
how training vectors aggregate into "homogeneous" groups/clusters as it is to
find a few vectors to represent them.)
For Tk = {xi with corresponding yi = k} an "R "-means algorithm might

proceed by

1. randomly selecting R different elements from Tk say

z
(1)
k1 , z

(1)
k2 , . . . ,z

(1)
kR

2. then for m = 2, 3, . . . letting

z
(m)
kl =

{
the mean of all xi ∈ Tk with∥∥∥xi − z(m−1)kl

∥∥∥ < ∥∥∥xi − z(m−1)kl′

∥∥∥ for all l 6= l′

iterating until convergence.
This way of choosing prototypes for class k ignores the "location" of the other

classes and the eventual use to which the prototypes will be put. A potential
improvement on this is to employ some kind of algorithm (again ad hoc, but
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reasonable) that moves prototypes in the direction of training input vectors in
their own class and away from training input vectors from other classes. One
such method is known by the name "LVQ"/"learning vector quantization." This
proceeds as follows.
With a set of prototypes (chosen randomly or from an R-means algorithm

or some other way)

zkl k = 1, 2, . . . ,K and l = 1, 2, . . . , R

in hand, at each iteration m = 1, 2, . . . for some sequence of "learning rates"
{εm} with εm ≥ 0 and εm ↘ 0

1. sample an xi at random from the training set and find k, l minimizing
‖xi − zkl‖ (i.e. find the closest prototype zkl)

2. if yi = k (from 1.), update zkl as

znewkl = zkl + εm (xi − zkl)

and if yi 6= k (from 1.), update zkl as

znewkl = zkl − εm (xi − zkl)

iterating until convergence.
As early as Section 1.3.3, we considered nearest neighbor methods. Consider

here again their use in classification problems. As before, define for each x the
l-neighborhood

nl (x) = the set of l inputs xi in the training set closest to x in <p

A nearest neighbor method is to classify x to the class with the largest repre-
sentation in nl (x) (possibly breaking ties at random). That is, define

f̂ (x) = arg max
k

∑
xi∈nl(x)

I [yi = k] (157)

l is a complexity parameter that might be chosen by cross-validation. Properly
implemented this kind of classifier can be highly effective in spite of the curse
of dimensionality. This often depends upon clever/appropriate/application-
specific choice of feature vectors/functions, definition of appropriate "distance"
in order to define "closeness" and the neighborhoods, and appropriate local or
global dimension reduction.
A possibility for "local" dimension reduction is this. At x ∈ <p one might

use regular Euclidean distance to find, say, 50 neighbors of x in the training
inputs to use to identify an appropriate local distance to employ in actually
defining the neighborhood nl (x) to be employed in classifier (157). The fol-
lowing is a DANN (discriminant adaptive nearest neighbor) (squared) metric at
x ∈ <p. Let

D2 (z,x) = (z − x)
′
Q (z − x)
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for

Q = W− 1
2

(
W− 1

2BW− 1
2 + εI

)
W− 1

2

= W− 1
2 (B∗ + εI)W− 1

2 (158)

for some ε > 0 where W is a pooled within-class sample covariance matrix

W =

K∑
k=1

π̂kW k

=

K∑
k=1

π̂k

(
1

nk − 1

∑
(xi − xk) (xi − xk)

′
)

(xk is the average xi from class k in the 50 used to create the local metric), B
is a weighted between-class covariance matrix of sample means

B =

K∑
k=1

π̂k (xk − x) (xk − x)
′

(x is a (probably weighted) average of the xk) and

B∗ = W− 1
2BW− 1

2

Notice that in form (158), the "outside" W− 1
2 factors "sphere" (z − x) differ-

ences relative to the within-class covariance structure. B∗ is then the between-
class covariance matrix of sphered sample means. Without the εI, the distance
would then discount differences in the directions of the eigenvectors correspond-
ing to large eigenvalues of B∗ (allowing the neighborhood defined in terms of
D to be severely elongated in those directions). The effect of adding the εI
term is to limit this elongation to some degree, preventing xi "too far in terms
of Euclidean distance from x" from being included in nl (x).
A global use of the DANN kind of thinking might be to do the following.

At each training input vector xi ∈ <p, one might again use regular Euclidean
distance to find, say, 50 neighbors and compute a weighted between-class-mean
covariance matrix Bi as above (for that xi). These might be averaged to
produce

B =
1

N

N∑
i=1

Bi

Then for eigenvalues of B, say λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 with corresponding
(unit) eigenvectors u1,u2, . . . ,up one might do nearest neighbor classification
based on the first few features

vj = u′jx

and ordinary Euclidean distance. This is a nearest neighbor version of the
reduced rank classification idea first met in the discussion of linear classification
in Section 12.
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15 Reproducing Kernel Hilbert Spaces: Penal-
ized/Regularized and Bayes Prediction

A general framework that unifies many interesting regularized fitting methods
is that of reproducing kernel Hilbert spaces (RKHSs). There is a very nice 2012
Statistics Surveys paper by Nancy Heckman (related to an older UBC Statistics
Department technical report (#216)) entitled "The Theory and Application of
Penalized Least Squares Methods or Reproducing Kernel Hilbert Spaces Made
Easy," that is the nicest exposition I know about of the connection of this
material to splines. Parts of what follows are borrowed shamelessly from her
paper. There is also some very helpful stuff in CFZ Section 3.5 and scattered
through Izenman about RKHSs.41

15.1 RKHSs and p = 1 Cubic Smoothing Splines

To provide motivation for a somewhat more general discussion, consider again
the smoothing spline problem. We consider here the function space

A =

{
h : [0, 1]→ <| h and h′ are absolutely continuous and

∫ 1

0

(h′′ (x))
2
dx <∞

}
as a Hilbert space (a linear space with inner product where Cauchy sequences
have limits) with inner product

〈f, g〉A ≡ f (0) g (0) + f ′ (0) g′ (0) +

∫ 1

0

f ′′ (x) g′′ (x) dx

(and corresponding norm ‖h‖A = 〈h, h〉1/2A ). With this definition of inner
product and norm, for x ∈ [0, 1] the (linear) functional (a mapping A → <)

Fx [f ] ≡ f (x)

is continuous. Thus the so-called "Riesz representation theorem" says that
there is an Rx ∈ A such that

Fx [f ] = 〈Rx, f〉A = f (x) ∀f ∈ A

(Rx is called "the representer of evaluation at x.") It is in fact possible to verify
that for z ∈ [0, 1]

Rx (z) = 1 + xz +R1x (z)

for
R1x (z) = xzmin (x, z)− x+ z

2
(min (x, z))

2
+

1

3
(min (x, z))

3

does this job.

41See also "Penalized Splines and Reproducing Kernels" by Pearce and Wand in The Amer-
ican Statistician (2006) and "Kernel Methods in Machine Learning" by Hofmann, Scholköpf,
and Smola in The Annals of Statistics (2008).
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Then the function of two variables defined by

R (x, z) ≡ Rx (z)

is called the reproducing kernel for A, and A is called a reproducing kernel
Hilbert space (RKHS) (of functions).
Define a linear differential operator on elements of A (a map from A to some

appropriate function space) by

L [f ] (x) = f ′′ (x)

Then the optimization problem solved by the cubic smoothing spline is mini-
mization of

N∑
i=1

(yi − Fxi [h])
2

+ λ

∫ 1

0

(L [h] (x))
2
dx (159)

over choices of h ∈ A.
It is possible to show that the minimizer of the quantity (159) is necessarily

of the form

h (x) = α0 + α1x+

N∑
i=1

βiR1xi (x)

and that for such h, the criterion (159) is of the form

(Y − Tα−Kβ)
′
(Y − Tα−Kβ) + λβ′Kβ

for

T
N×2

= (1,X) ,α =

(
α0
α1

)
, and K = (R1xi (xj))

So this has ultimately produced a matrix calculus problem.

15.2 What is Possible Beginning from Linear Functionals
and Linear Differential Operators for p = 1

For constants di > 0, functionals Fi, and a linear differential operator L defined
for continuous functions wk (x) by

L [h] (x) = h(m) (x) +

m−1∑
k=1

wk (x)h(k) (x)

Heckman considers the minimization of

N∑
i=1

di (yi − Fi [h])
2

+ λ

∫ b

a

(L [h] (x))
2
dx (160)

in the space of functions

A =

{
h : [a, b]→ <|

derivatives of h up to order m− 1 are

absolutely continuous and
∫ b
a

(
h(m) (x)

)2
dx <∞

}
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One may adopt an inner product for A of the form

〈f, g〉A ≡
m−1∑
k=0

f (k) (a) g(k) (a) +

∫ b

a

L [f ] (x)L [g] (x) dx

and have a RKHS. The assumption is made that the functionals Fi are con-
tinuous and linear, and thus that they are representable as Fi [h] = 〈fi, h〉A for
some fi ∈ A. An important special case is that where Fi [h] = h (xi), but
other linear functionals have been used, for example Fi [h] =

∫ b
a
Hi (x)h (x) dx

for known Hi.
The form of the reproducing kernel implied by the choice of this inner prod-

uct is derivable as follows. First, there is a linearly independent set of functions
{u1, . . . , um} that is a basis for the subspace of A consisting of those elements
h for which L [h] = 0 (the zero function). Call this subspace A0. The so-called
Wronskian matrix associated with these functions is then

W (x)
m×m

=
(
u
(j−1)
i (x)

)
With

C =
(
W (a)W (a)

′)−1
let

R0 (x, z) =
∑
i,j

Cijui (x)uj (z)

Further, there is a so-called Green’s function associated with the operator L,
a function G (x, z) such that for all h ∈ A satisfying h(k) (a) = 0 for k =
0, 1, . . . ,m− 1

h (x) =

∫ b

a

G (x, z)L [h] (z) dz

Let

R1 (x, z) =

∫ b

a

G (x, t)G (z, t) dt

The reproducing kernel associated with the inner product and L is then

R (x, z) = R0 (x, z) +R1 (x, z)

As it turns out, A0 is a RKHS with reproducing kernel R0 under the inner
product 〈f, g〉0 =

∑m−1
k=0 f

(k) (a) g(k) (a). Further, the subspace of A con-
sisting of those h with h(k) (a) = 0 for k = 0, 1, . . . ,m − 1 (call it A1) is
a RKHS with reproducing kernel R1 (x, z) under the inner product 〈f, g〉1 =∫ b
a
L [f ] (x)L [g] (x) dx. Every element of A0 is perpendicular to every element

of A1 in A and every h ∈ A can be written uniquely as h0 + h1 for an h0 ∈ A0
and an h1 ∈ A1.
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These facts can be used to show that a minimizer of quantity (160) exists
and is of the form

h (x) =

m∑
k=1

αkuk (x) +

N∑
i=1

βiR1 (xi, x)

For h (x) of this form, loss plus penalty (160) is of the form

(Y − Tα−Kβ)
′
D (Y − Tα−Kβ) + λβ′Kβ

for

T = (Fi [uj ]) ,α =


α1
α2
...
αm

 ,D = diag (d1, . . . , dm) , and K = (Fi [R1 (·, xj)])

and its optimization is a matrix calculus problem. In the important special
case where the Fi are function evaluation at xi, above

Fi [uj ] = uj (xi) and Fi [R1 (·, xj)] = R1 (xi, xj)

15.3 What Is Common Beginning Directly From a Kernel

Another way that it is common to make use of RKHSs is to begin with a kernel
and its implied inner product (rather than deriving one as appropriate to a
particular well-formed optimization problem in function spaces). The 2006
paper of Pearce and Wand in The American Statistician is a readable account
of this thinking that is more complete than what follows here (and provides
some references).
This development begins with C a compact subset of <p and a symmetric

kernel function
K : C × C → <

Ultimately, we will consider as predictors for x ∈ C linear combinations of sec-
tions of the kernel function,

∑N
i=1 biK (x,xi) (where the xi are the input vectors

in the training set). But to get there in a rational way, and to incorporate use of
a complexity penalty into the fitting, we will restrict attention to those kernels
that have nice properties. In particular, we require that K be continuous and
non-negative definite.
Then according to what is known as Mercer’s Theorem K may then be

written in the form

K (z,x) =

∞∑
i=1

γiφi (z)φi (x) (161)

for linearly independent (in L2 (C)) functions {φi}, and constants γi ≥ 0,
where the φi comprise an orthonormal basis for L2 (C) (so any function in
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f ∈ L2 (C) has an expansion in terms of the φi as
∑∞
i=1 〈f, φi〉2 φi for 〈f, h〉2 ≡∫

C
f (x)h (x) dx ), and the ones corresponding to positive γi may be taken

to be continuous on C. Further, the φi are "eigenfunctions" of the kernel K
corresponding to the "eigenvalues γi" in the sense that in L2 (C)∫

φi (z)K (z, ·) dz = γiφi (·)

Our present interest is in a function space A (that is a subset of L2 (C) with
a different inner product and norm) with members of the form

f (x) =

∞∑
i=1

ciφi (x) for ci with
∞∑
i=1

c2i
γi
<∞ (162)

(called the "primal form" of functions in the space). (Notice that all elements
of L2 (C) are of the form f (x) =

∑∞
i=1 ciφi (x) with

∑∞
i=1 c

2
i < ∞.) More

naturally, our interest centers on

f (x) =

∞∑
i=1

biK (x, zi) for some set of zi (163)

supposing that the series converges appropriately (called the "dual form" of
functions in the space). The former is most useful for producing simple proofs,
while the second is most natural for application, since how to obtain the φi and
corresponding γi for a given K is not so obvious. Notice that

K (z,x) =

∞∑
i=1

γiφi (z)φi (x)

=

∞∑
i=1

(γiφi (x))φi (z)

and letting γiφi (x) = ci (x), since
∑∞
i=1 c

2
i (x) /γi =

∑∞
i=1 γiφ

2
i (x) = K (x,x) <

∞, the function K (·,x) is of the form (162), so that we can expect functions of
the form (163) with absolutely convergent

∑∞
i=1 bi to be of form (162).

In the space of functions (162), we define an inner product (for our Hilbert
space) 〈 ∞∑

i=1

ciφi,

∞∑
i=1

diφi

〉
A

≡
∞∑
i=1

cidi
γi

so that ∥∥∥∥∥
∞∑
i=1

ciφi

∥∥∥∥∥
2

A

≡
∞∑
i=1

c2i
γi

Note then that for f =
∑∞
i=1 ciφi belonging to the Hilbert space A,

〈f,K (·,x)〉A =

∞∑
i=1

ciγiφi (x)

γi
=

∞∑
i=1

ciφi (x) = f (x)
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and so K (·,x) is the representer of evaluation at x. Further,

〈K (·, z) ,K (·,x)〉A ≡ K (z,x)

which is the reproducing property of the RKHS.
Notice also that for two linear combinations of slices of the kernel function

at some set of (say, M) inputs {zi} (two functions in A represented in dual
form)

f (·) =

M∑
i=1

ciK (·, zi) and g (·) =

M∑
i=1

diK (·, zi)

the corresponding A inner product is

〈f, g〉A =
M∑
i=1

ci

〈
K (·, zi) ,

M∑
j=1

djK (·, zj)
〉
A

=

M∑
i=1

M∑
j=1

cidjK (zi, zj)

= (c1, . . . , cM ) (K (zi, zj))i=1,...,M
j=1,...,M

 d1
...
dM


This is a kind of <M inner product of the coeffi cient vectors c′ = (c1, . . . , cM )
and d′ = (d1, . . . , dM ) defined by the nonnegative definite matrix (K (zi, zj)).
Further, if a random M -vector Y has covariance matrix (K (zi, zj)), this is
Cov

(
c′Y ,d′Y

)
. So, in particular, for f of this form ‖f‖2A = 〈f, f〉A =Var(c′Y ).

For applying this material to the fitting of training data, for λ > 0 and a
loss function L (ŷ, y) ≥ 0 define an optimization criterion

minimize
f∈A

(
N∑
i=1

L (f (xi) , yi) + λ ‖f‖2A

)
(164)

As it turns out, an optimizer of this criterion must, for the training vectors {xi},
be of the form

f̂ (x) =

N∑
i=1

biK (x,xi) (165)

and the corresponding
∥∥∥f̂∥∥∥2

A
is then

〈
f̂ , f̂

〉
A

=

N∑
i=1

N∑
j=1

bibjK (xi,xj)

The criterion (164) is thus

minimize
b∈<N

 N∑
i=1

L

 N∑
j=1

bjK (xi,xj) , yi

+ λb′ (K (xi,xj)) b

 (166)
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With the Gram matrix K = (K (xi,xj)) and P = K−a symmetric general-
ized inverse of K and defining

LN (Kb,Y ) ≡
N∑
i=1

L

 N∑
j=1

bjK (xi,xj) , yi


the optimization criterion (166) is

minimize
b∈<N

(
LN (Kb,Y ) + λb′Kb

)
i.e.

minimize
b∈<N

(
LN (Kb,Y ) + λb′K ′PKb

)
i.e.

minimize
v∈C(K)

(L (v,Y ) + λv′Pv) (167)

That is, the function space optimization problem (164) reduces to the N -
dimensional optimization problem (167). A vλ ∈ C (K) (the column space of
K) minimizing LN (v, Y )+λv′Pv corresponds to bλ minimizing LN (Kb,Y )+
λb′Kb via

Kbλ = vλ (168)

For the particular special case of squared error loss, L (ŷ, y) = (y − ŷ)
2, this

development has a very explicit punch line. That is,

LN (Kb,Y ) + λb′Kb = (Y −Kb)′ (Y −Kb) + λb′Kb

Some vector calculus shows that this is minimized over choices of b by

bλ = (K + λI)
−1
Y (169)

and corresponding fitted values are

Ŷ λ = vλ = K (K + λI)
−1
Y

Then using fact (169) under squared error loss, the solution to problem (164) is
from expression (165)

f̂λ (x) =

N∑
i=1

bλiK (x,xi) (170)

To better understand the nature of (167), consider the eigen decomposition
of K in a case where it is non-singular as

K = Udiag (η1, η2, . . . , ηN )U ′
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for eigenvalues η1 ≥ η2 ≥ · · · ≥ ηN > 0, where the eigenvector columns of U
comprise an orthonormal basis for <N . The penalty in form (167) is

λv′Pv = λv′Udiag (1/η1, 1/η2, . . . , 1/ηN )U ′v

= λ

N∑
j=1

1

ηj
〈v,uj〉2

Now (remembering that the uj comprise an orthonormal basis for <N )

v =

N∑
j=1

〈v,uj〉uj and ‖v‖2 = 〈v,v〉 =

N∑
j=1

〈v,uj〉2

so we see that in choosing a v to optimize LN (v,Y )+λv′Pv, we penalize highly
those v with large components in the directions of the late eigenvectors of K
(the ones corresponding to its small eigenvalues) thereby tending to suppress
those features of a potential v.

HTF seem to say that the eigenvalues and eigenvectors of the data-dependent
N × N matrix K are somehow related respectively to the constants γi and
functions φi in the representation (161) of K as a weighted series of products.
That seems hard to understand and (even if true) certainly not obvious.
CFZ provide a result summarizing the most general available version of this

development, known as "the representer theorem." It says that if Ω : [0,∞)→
< is strictly increasing and L ((x1, y1, h (x1)) , . . . , (xN , yN , h (xN ))) ≥ 0 is an
arbitrary loss function associated with the prediction of each yi as h (xi), then
an h ∈ A minimizing

L ((x1, y1, h (x1)) , (x2, y2, h (x2)) , . . . , (xN , yN , h (xN ))) + Ω (‖h‖A)

has a representation as

h (x) =

N∑
i=1

βiK (x,xi)

Further, if {ψ1, ψ2, . . . , ψM} is a set of real-valued functions and the N ×M
matrix (ψj (xi)) is of rank M then for h0 ∈ span{ψ1, ψ2, . . . , ψM} and h1 ∈ A,
an h = h0 + h1 minimizing

L ((x1, y1, h (x1)) , (x2, y2, h (x2)) , . . . , (xN , yN , h (xN ))) + Ω (‖h1‖A)

has a representation as

h (x) =

M∑
i=1

αiψi (x) +

N∑
i=1

βiK (x,xi)

The extra generality provided by this theorem for the squared error loss case
treated above is that it provides for linear combinations of the functions ψi (x)
to be unpenalized in fitting. Then for

Ψ
N×M

= (ψj (xi))
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and
R =

(
I −Ψ

(
Ψ′Ψ

)−1
Ψ′
)
Y

an optimizing α is α̂ =
(
Ψ′Ψ

)−1
Ψ′Y and β̂λ optimizes

(R−Kβ)
′
(R−Kβ) + λβ′Kβ

and the earlier argument implies that β̂λ = (K + λI)
−1
R.

15.3.1 Reprise of Some Special Cases

Here we briefly consider special cases of this development, making use of kernel
functions introduced as early as Section 1.4.3, beginning with the standard
kernel in p dimensions

K (z,x) = (1 + 〈z,x〉)d

For fixed xi the basis functions K (x,xi) are dth order polynomials in the entries
of xi. So the fitting is in terms of such polynomials. Note that since K (z,x)
is relatively simple here, there seems to be a good chance of explicitly deriving
a representation (161) and perhaps working out all the details of what is above
in a very concrete setting.
Another standard kernel function in p dimensions is

K (z,x) = exp
(
−γ ‖z − x‖2

)
and the basis functions K (x,xi) are essentially spherically symmetric normal
pdfs with mean vectors xi. (These are "Gaussian radial basis functions" and for
p = 2, functions (165) produce prediction surfaces in 3-space that have smooth
symmetric "mountains" or "craters" at each xi, of elevation or depth relative
to the rest of the surface governed by bi and extent governed by γ.)
Of course, Section 1.4.3 provides a number of insights that enable the cre-

ation of a wide variety of kernels beyond the few mentioned here.
Then, for example, the standard development of so-called "support vector

classifiers" in a 2-class context with y taking values ±1, uses some kernel K (z,x)
and voting function

g (x) = b0 +

∞∑
i=1

biK (x,xi)

in combination with loss

L (g (x) , y) = [1− yg (x)]+

(the sign of g (x) providing the classification associated with x).
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15.3.2 Addendum Regarding the Structures of the Spaces Related
to a Kernel

An amplification of some aspects of the basic description provided above for the
RKHS corresponding to a kernel K : C × C → < is as follows.
From the representation

K (z,x) =

∞∑
i=1

γiφi (z)φi (x)

write
φ∗i =

√
γiφi

so that the kernel is

K (z,x) =

∞∑
i=1

φ∗i (z)φ∗i (x) (171)

(Note that considered as functions in L2 (C) the φ∗i are orthogonal, but not
generally orthonormal, since 〈φ∗i , φ∗i 〉2 ≡

∫
C
γiφ

2
i (x) dx = γi which is typically

not 1.) Representation (171) suggests that one think about the inner product
for inputs provided by the kernel in terms of a transform of an input vector
x ∈ <p to an infinite-dimensional feature vector

φ∗ (x) = (φ∗1 (x) , φ∗2 (x) , . . .)

and then "ordinary <∞ inner products" defined on those feature vectors.
The function space A has members of the (primal) form

f (x) =

∞∑
i=1

ciφi (x) for ci with
∞∑
i=1

c2i
γi
<∞

This is perhaps more naturally

f (x) =

∞∑
i=1

ciφ
∗
i (x) for ci with

∞∑
i=1

(
ci
√
γi
)2

γi
=

∞∑
i=1

c2i <∞

(Again, all elements of L2 (C) are of the form f (x) =
∑∞
i=1 ciφi (x) with∑∞

i=1 c
2
i < ∞.) The A inner product of two functions of this primal form

has been defined as〈 ∞∑
i=1

ciφi,

∞∑
i=1

diφi

〉
A

≡
∞∑
i=1

cidi
γi

=

〈 ∞∑
i=1

ci√
γi
φ∗i ,

∞∑
i=1

di√
γi
φ∗i

〉
A

=

〈(
c1√
γ1
,
c2√
γ2
, . . .

)
,

(
d1√
γ1
,
d2√
γ2
, . . .

)〉
<∞
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So, two elements of A written in terms of the φ∗i (instead of their multiples φi)
say

∑∞
i=1 c

∗
iφ
∗
i and

∑∞
i=1 d

∗
iφ
∗
i have A inner product that is the ordinary <∞

inner product of their vectors of coeffi cients.
Now consider the function

K (·,x) =

∞∑
i=1

φ∗i (·)φ∗i (x)

For f =
∑∞
i=1 c

∗
iφ
∗
i ∈ A,

〈f,K (·,x)〉A =

〈 ∞∑
i=1

c∗iφ
∗
i ,K (·,x)

〉
A

=

∞∑
i=1

c∗iφ
∗
i (x) = f (x)

and (perhaps more clearly than above) indeed K (·,x) is the representer of eval-
uation at x in the function space A.

15.4 Gaussian Process "Priors," Bayes Predictors, and
RKHSs

The RKHS material has an interesting connection to Bayes prediction. It’s our
purpose here to show that connection. Consider an application of essentially
Bayesian thinking to the development of a predictor based the use of a Gaussian
process as a more or less non-parametric "prior distribution" for the function
(of x) E[y|x]. That is, for purposes of developing a predictor, suppose that one
assumes that

y = η (x) + ε

where
η (x) = µ (x) + γ (x)

Eε = 0, Varε = σ2, the function µ (x) is known (it could be taken to be identi-
cally 0) and plays the role of a prior mean for the function (of x)

η (x) = E [y|x]

and (independent of errors ε), γ (x) is a realization of a mean 0 stationary
Gaussian process on <p, this Gaussian process describing the prior uncertainty
for η (x) around µ (x). More explicitly, the assumption on γ (x) is that Eγ (x) =
0 and Varγ (x) = τ2 for all x, and for some appropriate (correlation ) function
ρ, Cov(γ (x) , γ (z)) = τ2ρ (x− z) for all x and z (ρ (0) = 1 and the function of
two variables ρ (x− z) must be positive definite). The "Gaussian" assumption
is then that for any finite set of elements of <p, say z1, z2, . . . ,zM , the vector
of corresponding values γ (zi) is multivariate normal.
There are a number of standard forms that have been suggested for the

correlation function ρ. The simplest ones are of a product form, i.e. if ρj is a
valid one-dimensional correlation function, then the product

ρ (x− z) =

p∏
j=1

ρj (xj − zj)
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is a valid correlation function for a Gaussian process on <p. Standard forms
for correlation functions in one dimension are ρ (∆) = exp

(
−c∆2

)
and ρ (∆) =

exp (−c |∆|).42 The first produces "smoother" realizations than does the sec-
ond, and in both cases, the constant c governs how fast realizations vary.
One may then consider the joint distribution (conditional on the xi and

assuming that for the training values yi the εi are iid independent of the γ (xi))
of the training output values and a value of η (x). From this, one can find the
conditional mean for η (x) given the training data. To that end, let

Σ
N×N

=
(
τ2ρ (xi − xj)

)
i=1,2,...,N
j=1,2,...,N

Then for a single value of x,
y1
y2
...
yN
η (x)

 ∼ MVNN+1



µ (x1)
µ (x2)
...

µ (xN )
µ (x)

 ,

( (
Σ + σ2I

)
Σ (x)

Σ (x)
′

τ2

)


for

Σ (x)
N×1

=


τ2ρ (x− x1)
τ2ρ (x− x2)

...
τ2ρ (x− xN )


Then standard multivariate normal theory says that the conditional mean of
η (x) given Y is

f̂ (x) = µ (x) + Σ (x)
′ (

Σ + σ2I
)−1


y1 − µ (x1)
y2 − µ (x2)

...
yN − µ (xN )

 (172)

Write

w
N×1

=
(
Σ + σ2I

)−1


y1 − µ (x1)
y2 − µ (x2)

...
yN − µ (xN )

 (173)

and then note that form (172) implies that

f̂ (x) = µ (x) +

N∑
i=1

wiτ
2ρ (x− xi) (174)

42See Section 1.4.3 for other p = 1 bounded non-negative definite functions that can be
used to create correlation functions.
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and we see that this development ultimately produces µ (x) plus a linear com-
bination of the "basis functions" τ2ρ (x− xi) as a predictor. Remembering
that τ2ρ (x− z) must be positive definite and seeing the ultimate form of the
predictor, we are reminded of the RKHS material.
In fact, consider the case where µ (x) ≡ 0. (If one has some non-zero prior

mean for η (x), arguably that mean function should be subtracted from the
raw training outputs before beginning the development of a predictor. At a
minimum, output values should probably be centered before attempting devel-
opment of a predictor.) Compare displays (173) and (174) to displays (169)
and (170) for the µ (x) = 0 case. What is then clear is that the present
"Bayes" Gaussian process development of a predictor under squared error loss
based on a covariance function τ2ρ (x− z) and error variance σ2 is equivalent
to a RKHS regularized fit of a function to training data based on a kernel
K (x, z) = τ2ρ (x− z) and penalty weight λ = σ2.

16 More on Understanding and Predicting Pre-
dictor Performance

There are a variety of theoretical and empirical quantities that might be com-
puted to quantify predictor performance. Those that are empirical and reliably
track important theoretical ones might potentially be used to select an effective
predictor. We’ll here consider some of those (theoretical and empirical) mea-
sures. We will do so in the by-now-familiar setting where training data (x1, y1) ,
(x2, y2) , . . . , (xN , yN ) are assumed to be iid P and independent of (x, y) that
is also P distributed, and are used to pick a prediction rule f̂ (x) to be used
under a loss L (ŷ, y) ≥ 0.
What is very easy to think about and compute is the training error

err =
1

N

N∑
i=1

L
(
f̂ (xi) , yi

)
This typically decreases with increased complexity in the form of f , and is no
reliable indicator of predictor performance off the training set. Measures of
prediction rule performance off the training set must have a theoretical basis
(or be somehow based on data held back from the process of prediction rule
development).
General loss function versions of (squared error loss) quantities related to

err defined in Section ??, are

Err (x) ≡ ETE
[
L
(
f̂ (x) , y

)
|x
]

ErrT ≡ E(x,y)L
(
f̂ (x) , y

)
(175)

and
Err ≡ ExErr (x) = ETErrT (176)
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A slightly different and semi-empirical version of this expected prediction error
(176) is the "in-sample" test error (7.12) of HTF

1

N

N∑
i=1

Err (xi)

16.1 Optimism of the Training Error

Typically, err is less than ErrT . Part of the difference in these is potentially
due to the fact that ErrT is an "extra-sample" error, in that the averaging in
(175) is potentially over values x outside the set of values in the training data.
We might consider instead

ErrT in =
1

N

N∑
i=1

Ey
∗
i L
(
f̂ (xi) , y

∗
i

)
(177)

where the expectations indicated in form (177) are over y∗i ∼ Py|x=xi (the
entire training sample used to choose f̂ , both inputs and outputs, is being held
constant in the averaging in display (177)). The difference

op = ErrT in − err

is called the "optimism of the training error." HTF use the notation

ω = EY op = EY (ErrT in − err) (178)

where the averaging indicated by EY is over the outputs in the training set
(using the conditionally independent yis, yi ∼ Py|x=xi). HTF say that for
many losses

ω =
2

N

N∑
i=1

CovY (ŷi, yi) (179)

For example, consider the case of squared error loss. There

ω = EY (ErrT in − err)

= EY EY
∗ 1

N

N∑
i=1

(
y∗i − f̂ (xi)

)2
− EY 1

N

N∑
i=1

(
yi − f̂ (xi)

)2
=

2

N

N∑
i=1

(
EY yif̂ (xi)− EY EY

∗
y∗i f̂ (xi)

)
=

2

N

N∑
i=1

EY f̂ (xi) (yi − E [y|x = xi])

=
2

N

N∑
i=1

CovY (ŷi, yi)
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We note that in this context, assuming that given the xi in the training data the
outputs are uncorrelated and have constant variance σ2, by relationship (57)

ω =
2σ2

N
df
(
Ŷ
)

16.2 Cp, AIC and BIC

The fact that
ErrT in = err+ op

suggests the making of estimates of ω =EY op and the use of

err+ ω̂ (180)

as a guide in model selection. This idea produces consideration of the model
selection criteria Cp/AIC and BIC.

16.2.1 Cp and AIC

For the situation of least squares fitting with p predictors or basis functions and
squared error loss,

df
(
Ŷ
)

= p = tr
(
X
(
X ′X

)−1
X ′
)

so that
∑N
i=1Cov

Y (ŷi, yi) = pσ2. Then, if σ̂2 is an estimated error variance
based on a low-bias/high-number-of-predictors fit, a version of quantity (180)
suitable for this context is Mallows’Cp

Cp ≡ err+
2p

N
σ̂2

In a more general setting, if one can appropriately evaluate or estimate∑N
i=1Cov

Y (ŷi, yi) =df
(
Ŷ
)
σ2, a general version of quantity (180) becomes the

Akaike information criterion

AIC = err+
2

N

N∑
i=1

CovY (ŷi, yi) = err+
2σ2

N
df
(
Ŷ
)

16.2.2 BIC

For situations where fitting is done by maximum likelihood, the Bayesian Infor-
mation Criterion of Schwarz is an alternative to AIC. That is, where the joint
distribution P produces density P (y|θ,x) for the conditional distribution of y|x
and θ̂ is the maximum likelihood estimator of θ, a (maximized) log-likelihood
is

loglik =

N∑
i=1

logP
(
yi|θ̂,xi

)
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and the so-called Bayesian information criterion

BIC = −2 loglik+ (logN) df
(
Ŷ
)

For y|x normal with variance σ2, up to a constant, this is

BIC =
N

σ2

[
err+

(logN)σ2

N
df
(
Ŷ
)]

and after switching 2 for logN , BIC is a multiple of AIC. The replacement of
2 with logN means that when used to guide model/predictor selections, BIC
will typically favor simpler models/predictors than will AIC.
The Bayesian origins of BIC can be developed as follows. Suppose (as in

Section 11.1) that M models are under consideration, the mth of which has
parameter vector θm and corresponding density for training data

fm (T |θm)

with prior density for θm
gm (θm)

and prior probability for model m

π (m)

With this structure, the posterior distribution of the model index is

π (m|T ) ∝ π (m)

∫
fm (T |θm) gm (θm) dθm

Under 0-1 loss and uniform π (·), one wants to choose model m maximizing∫
fm (T |θm) gm (θm) dθm = fm (T ) = the mth marginal of T

The so-called Laplace approximation says that

log fm (T ) ≈ log fm

(
T |θ̂m

)
− dm

2
logN +O (1)

where dm is the real dimension of θm. Assuming that the marginal of x

doesn’t change model-to-model or parameter-to-parameter, log fm

(
T |θ̂m

)
is

loglik+CN , where CN is a function of only the input values in the training set.
Then

−2 log fm (T ) ≈ −2 loglik+ (logN) dm +O (1)− 2CN

= BIC +O (1)− 2CN

and (at least approximately) choosing m to maximize fm (T ) is choosing m to
minimize BIC.
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16.3 Cross-Validation Estimation of Err

K-fold cross-validation is described in Section 1.3.6. One hopes that

CV
(
f̂
)

=
1

N

N∑
i=1

L
(
f̂k(i) (xi) , yi

)
)

estimates Err. In predictor selection, say where predictor f̂ has a complexity
parameter α, it is common to look at

CV
(
f̂α

)
as a function of α, try to optimize, and then refit (with that α) to the whole
training set.

K-fold cross-validation can be expected to estimate Err for

”N” =

(
1− 1

K

)
N

The question of how cross-validation might be expected to do is thus related
to how Err changes with N (the size of the training sample). The statistical
folklore is that typically Err decreases monotonically in N approaching some
limiting value as N goes to infinity. The "early" (small N) part of the "Err vs
N curve" is steep and the "late" part (large N) is relatively flat. If (1− 1/K)N
is large enough that at such size of the training dataset, the curve is flat, then
the effectiveness of cross-validation is limited only by the noise inherent noise
in estimating it, and not by the fact that training sets of size (1− 1/K)N are
not of size N . Operationally, K = 5 or 10 seems standard, though as discussed
in Section ?? there is recent evidence in favor of using K = N , i.e., LOOCV.
HTF say that for many linear fitting methods (that produce Ŷ = MY )

including least squares projection and cubic smoothing splines, the N = K
(leave one out) cross-validation error is (for f̂ i produced by training on T −
{(xi, yi)})

CV
(
f̂
)

=
1

N

N∑
i=1

(
yi − f̂ i (xi)

)2
=

1

N

N∑
i=1

(
yi − f̂ (xi)

1−Mii

)2
(for Mii the ith diagonal element of M). The so-called generalized cross-
validation approximation to this is the much more easily computed

GCV
(
f̂
)

=
1

N

N∑
i=1

(
yi − f̂ (xi)

1− tr (M) /N

)2
=

err

(1− tr (M) /N)
2
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It is worth noting (per HTF Exercise 7.7) that since 1/ (1− x)
2 ≈ 1 + 2x for

x near 0,

GCV
(
f̂
)

=
1

N

N∑
i=1

(
yi − f̂ (xi)

1− tr (M) /N

)2

≈ 1

N

N∑
i=1

(
yi − f̂ (xi)

)2
+

2

N
tr (M)

(
1

N

N∑
i=1

(
yi − f̂ (xi)

)2)

which is close to AIC, the difference being that here σ2 is being estimated based
on the model being fit, as opposed to being estimated based on a low-bias/large
model.

16.4 Bootstrap Estimation of Err

Suppose that the values of the input vectors in the training set are unique. One
might make B bootstrap samples ofN (random samples with replacement of size
N) from the training set T , say T ∗1,T

∗
2, . . . ,T

∗
B , and train on these bootstrap

samples to produce predictors, say

predictor f̂∗b based on T ∗b

Let Ci be the set of indices b = 1, 2, . . . , B for which (xi, yi) /∈ T ∗b . A possible
bootstrap estimate of Err is then

Êrr
(1)
≡ 1

N

N∑
i=1

[
1

|Ci|
∑
b∈Ci

L
(
f̂∗b (xi) , yi

)]

It’s not completely clear what to make of this. For one thing, the T ∗b rarely
have N distinct elements. In fact, the expected number of distinct cases in
a bootstrap sample for N of any appreciable size is about .632N . So roughly

speaking, we might expect Êrr
(1)
to estimate Err at .632N , not at N . So unless

Err as a function of training set size is fairly flat to the right of .632N , one might
expect substantial positive bias in it as an estimate of Err (at N).
HTF argue for

Êrr
(.632)

≡ .368 err+ .632 Êrr
(1)

as a first order correction on the biased bootstrap estimate, but admit that
this is not perfect either, and propose a more complicated fix (that they call

Êrr
(.632+)

) for classification problems.
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Part V

Unsupervised Learning Methods
17 Some Methods of Unsupervised Learning

As we said in Section 1.1, "supervised learning" is basically prediction of y
belonging to < or some finite index set from a p-dimensional x with coordinates
each individually in < or some finite index set, using training data pairs

(x1, y1) , (x2, y2) , . . . , (xN , yN )

to create an effective prediction rule

ŷ = f̂ (x)

This is one kind of discovery and exploitation of structure in the training data.
As we also said in Section 1.1, "unsupervised learning" is discovery and

quantification of structure in

X
N×p

=


x′1
x′2
...
x′N


without reference to some particular coordinate of a p-dimensional x as an
object of prediction. There are a number of versions of this problem in Ch 14
of HTF that we will outline here.

17.1 Association Rules/Market Basket Analysis

Suppose that one is presented with a database representing N transactions, each
of which may or may not include each one of items

s1, s2, . . . , sp

so that one could think of x taking values in {0, 1}p, xj = 1 indicating presence
of item j in the transaction. For two disjoint sets of items

S1 = {s11, s12, . . . , s1k1} and S2 = {s21, s22, . . . , s2k2}

consider transactions that

1. include all items in S1,

2. include all items in S2, or

3. include all items in S = S1 ∪ S2.
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In applications of this formalism to "market-basket analysis" it is common
to call S,S1, and S2 item sets and the statement

"the transaction includes all of both item set S1 and item set S2"

a conjunctive rule. It is then common to further talk about association
rules of the form

S1 =⇒ S2 (181)

and to consider quantitative measures associated with them. In framework
(181), S1 is called the antecedent and S2 is called the consequent in the rule.

Define indicator variables

Iij = I [transaction i includes all of item set Sj ]

for i = 1, . . . , N and j = 1, 2. For the association rule S1 =⇒ S2,

1. the support of the rule (also the support of the item set S) is

1

N

N∑
i=1

Ii1Ii2

(the relative frequency with which the full item set is seen in the data-
base/training cases),

2. the confidence or predictability of the rule is∑N
i=1 Ii1Ii2∑N
i=1 Ii1

(the relative frequency with which the full item set S is seen in the training
cases that exhibit the smaller item set S1),

3. the "expected confidence" of the rule is

1

N

N∑
i=1

Ii2

(the relative frequency with which item set S2 is seen in the training cases),
and

4. the lift of the rule is

confidence

expected confidence
=

N
∑N
i=1 Ii1Ii2(∑N

i=1 Ii1

)(∑N
i=1 Ii2

)
(a measure of association).
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If one thinks of the cases in the training set as a random sample from some
distribution on item sets (equivalently, a distribution for x), lets I1 stand for
the event that all items in S1 are in the set, I2 stand for the event that all items
in S2 are in the set, and I stand for the event that all items in S = S1 ∪ S2 are
in the set, then

1. the support of the rule is an estimate of P (I),

2. the confidence is an estimate of P (I2|I1),

3. the expected confidence is an estimate of P (I2),

4. and the lift is an estimate of the ratio P (I1 and I2) / (P (I1) · P (I2)).

The basic thinking about association rules seems to be that usually (but
perhaps not always) one wants rules with large support (so that the estimates
can be reasonably expected to be reliable). Further, one then wants large
confidence or lift, as these indicate that the corresponding rule will be useful in
terms of understanding how the coordinates of x (presence or absence of various
items) are related in the database/training data. Apparently, standard practice
is to identify a large number of promising item sets and association rules, and
make a database of association rules that can be queried in searches like:

"Find all rules in which YYY is the consequent that have confidence
over 70% and support more than 1%."

Basic questions that we have to this point not addressed are where one gets
appropriate item sets S and how one uses them to produce (S1 and S2 and)
corresponding association rules. In answer to the second of these questions,
one might say "consider all 2|S|−2 association rules that can be associated with
a given item set." But what then are "interesting" item sets S or how does
one find a potentially useful set of such? We proceed to briefly consider these
issues.

17.1.1 The "Apriori Algorithm" and Use of its Output

One standard way of generating item sets (to process into association rules)
is to use the so-called "apriori algorithm." This produces all item sets S of
support at least t. (These can then be examined to find potentially interesting
association rules by breaking them into two pieces S1 and S2).
This operates as follows.

1. Pass through all p items
s1, s2, . . . , sp

identifying those sj that individually have support/prevalence

1

N
·# {i | xij = 1}

204



at least t and place them in the set

St1 = {item sets of size 1 with support at least t}

2. For each sj ∈ St1 check to see which two-element item sets

{sj , sj′}j′ 6=j and sj′∈St1
have support/prevalence

1

N
·# {i | xijxij′ = 1}

at least t and place them in the set

St2 = {item sets of size 2 with support at least t}

...

m. For each


m−1 entries︷ ︸︸ ︷
sj , sj′ , . . .

 ∈ Stm−1 check to see which m-element item sets

{sj , sj′ , . . .} ∪ {sj∗} for j∗ /∈ {j, j′, . . .} and sj∗ ∈ St1
have support/prevalence

1

N
·# {i | xijxij′ · · ·xij∗ = 1}

at least t and place them in the set

Stm = {item sets of size m with support at least t}

This algorithm terminates when at some stage m the set Stm is empty. Then
a sensible set of item sets (to consider for making association rules) is St =
∪Stm, the set of all item sets with prevalence in the training data of at least
t. Apparently for commercial databases of "typical size," unless t is very small
it is feasible to use this algorithm to to find St. It is also possible to use a
variant of the apriori algorithm to find all association rules based on item sets
in St with confidence at least c. This then produces a database of association
rules that can be queried by a user wishing to identify useful structure in the
database/training dataset.
In a more statistical vein, one can adopt from St some consequent of interest

S∗∗ = {s∗∗1 , s∗∗2 , . . . , s∗∗l } and consider modeling of the binary variable

I [all items in S∗∗ are in a transaction] =
∏

j s.t. sj∈S∗∗
xj

on the basis of some non-overlapping set of variables related to an antecedent
S∗ (disjoint from S∗∗ belonging to St). For example, a natural possibility is
to use logistic regression based on the set of variables xj with sj ∈ S∗ to look
for items (or sets of items if products of these indicators are employed) that are
associated with "large" (or "increased") probabilities of the consequent.
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17.2 Clustering

Typically (but not always) the object in "clustering" is to find natural groups
of rows or columns of

X
N×p

=


x′1
x′2
...
x′N


(in some contexts one may want to somehow find homogenous "blocks" in a
properly rearranged X). Sometimes all columns of X represent values of
continuous variables (so that ordinary arithmetic applied to all its elements
is meaningful). But sometimes some columns correspond to ordinal or even
categorical variables. In light of all this, we will let xi i = 1, 2, . . . , r stand for
"items" to be clustered (that might be rows or columns of X) with entries that
need not necessarily be continuous variables.
In developing and describing clustering methods, it is often useful to have

a dissimilarity measure d (x, z) that (at least for the items to be clustered and
perhaps for other possible items) quantifies how "unalike" items are. This
measure is usually chosen to satisfy

1. d (x, z) ≥ 0 ∀x, z

2. d (x,x) = 0 ∀x, and

3. d (x, z) = d (z,x) ∀x, z.

It may be chosen to further satisfy

4. d (x, z) ≤ d (x,w) + d (z,w) ∀x, z, and w, or

4′. d (x, z) ≤ max [d (x,w) , d (z,w)] ∀x, z, and w.

Where 1-4 hold, d is a "metric." Where 1-3 hold and the stronger condition 4′

holds, d is an "ultrametric."
In a case where one is clustering rows of X and each column of X contains

values of a continuous variable, a squared Euclidean distance is a natural choice
for a dissimilarity measure

d (xi,xi′) = ‖xi − xi′‖2 =

p∑
j=1

(xij − xi′j)2

In a case where one is clustering columns of X and each column of X contains
values of a continuous variable, with rjj′ the sample correlation between values
in columns j and j′, a plausible dissimilarity measure is

d (xj ,xj′) = 1− |rjj′ |
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When dissimilarities between r items are organized into a (non-negative
symmetric) r × r matrix

D = (dij) = (d (xi,xj))

with 0s down its diagonal, the terminology "proximity matrix" is often used.
For some clustering algorithms and for some purposes, the proximity matrix
encodes all one needs to know about the items to do clustering. One seeks a
partition of the index set {1, 2, . . . , r} into subsets such that the dij for indices
within a subset are small (and the dij for indices i and j from different subsets
are large).

17.2.1 Partitioning Methods ("Centroid"-Based Methods)

By far the most commonly used clustering methods are based on partitioning
related to "centroids," particularly the so called "K-means" clustering algorithm
for the rows of X in cases where the columns contain values of continuous
variables xj (for which arithmetic averaging makes sense).43

The algorithms begins with some set of K distinct "centers" c01, c
0
2, . . . , c

0
K .

They might, for example, be a random selection of the rows of X (subject to
the constraint that they are distinct). One then assigns each xi to that center
c0k0(i) minimizing

d
(
xi, c

0
l

)
over choice of l (creating K clusters around the centers) and replaces all of the
c0k with the corresponding cluster means

c1k =
1

# of i with k0(i) = k

∑
I
[
k0(i) = k

]
xi

At stage m with all cm−1k available, one then assigns each xi to that center
cm−1km−1(i) minimizing

d
(
xi, c

m−1
l

)
over choice of l (creating K clusters around the centers) and replaces all of the
cm−1k with the corresponding cluster means

cmk =
1

# of i with km−1(i) = k

∑
I
[
km−1(i) = k

]
xi

This iteration goes on to convergence. One compares multiple random starts
for a given K (and then minimum values found for each K) in terms of

Total Within-Cluster Dissimilarity (K) =

K∑
k=1

∑
xi in cluster k

d (xi, ck)

43 In this context, a natural choice of d (x,z) is ‖x− z‖2 . A fancier option might be built
on squared Mahalanobis distance, (x− z)′Q (x− z) for some non-negative definite Q.

207



for c1, c2, . . . , cK the final means produced by the iterations.44 One may then
consider the (monotone) sequence of Total Within-Cluster Dissimilarities and
try to identify a value K beyond which there seem to be diminishing returns for
increased K.
A more general version of this algorithm (that might be termed a K-medoid

algorithm) doesn’t require that the entries of the xi be values of continuous
variables, but (since it is then unclear that one can even evaluate, let alone
find a general minimizer of, d (xi, ·)) restricts the "centers" to be original items.
This algorithm begins with some set of K distinct "medoids" c01, c

0
2, . . . , c

0
K that

are a random selection from the r items xi (subject to the constraint that they
are distinct). One then assigns each xi to that medoid c0k0(i) minimizing

d
(
xi, c

0
l

)
over choice of l (creating K clusters associated with the medoids) and replaces
all of the c0k with c

1
k the corresponding minimizers over the xi′ belonging to

cluster k of the sums ∑
i with k0(i)=k

d (xi,xi′)

At stage m with all cm−1k available, one then assigns each xi to that medoid
cm−1km−1(i) minimizing

d
(
xi, c

m−1
l

)
over choice of l (creating K clusters around the medoids) and replaces all of the
cm−1k with cmk the corresponding minimizers over the xi′ belonging to cluster k
of the sums ∑

i with km−1(i)=k

d (xi,xi′)

This iteration goes on to convergence. One compares multiple random starts
for a given K (and then minimum values found for each K) in terms of

K∑
k=1

∑
xi in cluster k

d (xi, ck)

for c1, c2, . . . , cK the final medoids produced by the iterations.

17.2.2 Hierarchical Methods

To apply a hierarchical clustering method, one must first choose a method of
using dissimilarities for items to define dissimilarities for clusters. Three com-
mon (and somewhat obvious) possibilities in this regard are as follows. For C1
and C2 different elements of a partition of the set of items, or equivalently their
r indices, one might define dissimilarity of C1 and C2 as

44For a squared Euclidean distance d, this is a total squared distance of xis to their corre-
sponding cluster means.
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1. D (C1, C2) = min {dij |i ∈ C1 and j ∈ C2} (this is the "single linkage" or
"nearest neighbor" choice),

2. D (C1, C2) = max {dij |i ∈ C1 and j ∈ C2} (this is the "complete linkage"
choice), or

3. D (C1, C2) = 1
#C1·#C2

∑
i∈C1, j∈C2 dij (this is the "average linkage" choice).

There are both agglomerative/bottom-up methods and divisive/top-down
methods of hierarchical clustering. An agglomerative hierarchical clustering
algorithm operates as follows. One begins with every item xi, i = 1, 2, . . . , r
functioning as a singleton cluster. Then one finds the minimum dij for i 6= j
and puts the corresponding two items into a single cluster (of size 2). Then
when one is at a stage where there are m clusters, one finds the two clusters
with minimum dissimilarity and merges them to make a single cluster, leaving
m− 1 clusters overall. This continues until there is only a single cluster. The
sequence of r different clusterings (with r through 1 clusters) serves as a menu
of potentially interesting solutions to the clustering problem. These are often
displayed in the form of a dendogram, where cutting the dendogram at a given
level picks out one of the (increasingly coarse as the level rises) clusterings.
Those items clustered together "deep" in the tree/dendogram are presumably
interpreted to be potentially "more alike" than ones clustered together only at
a high level.
A divisive hierarchical algorithm operates as follows. Starting with a single

"cluster" consisting of all items, one finds the maximum dij and uses the two
corresponding items as seeds for two clusters. One then assigns each xl for
l 6= i and l 6= j to the cluster represented by xi if

d (xi,xl) < d (xj ,xl)

and to the cluster represented xj otherwise. When one is at a stage where there
are m clusters, one identifies the cluster with largest dij corresponding to a pair
of elements in the cluster, splitting it using the method applied to split the
original "single large cluster" (to produce an (m+ 1)-cluster clustering). This,
like the agglomerative algorithm, produces a sequence of r different clusterings
(with 1 through r clusters) that serves as a menu of potentially interesting
solutions to the clustering problem. And like the sequence produced by the
agglomerative algorithm, this sequence can be represented using a dendogram.
One may modify either the agglomerative or divisive algorithms by fixing a

threshold t > 0 for use in deciding whether or not to merge two clusters or to
split a cluster. The agglomerative version would terminate when all pairs of
existing clusters have dissimilarities more than t. The divisive version would
terminate when all dissimilarities for pairs of items in all clusters are below
t. Fairly obviously, employing a threshold has the potential to shorten the
menu of clusterings produced by either of the methods to include less than r
clusterings. (Obviously, thresholding the agglomerative method cuts off the
top of the corresponding full dendogram, and thresholding the divisive method
cuts off the bottom of the corresponding full dendogram.)
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17.2.3 (Mixture) Model-Based Methods

A completely different approach to clustering into K clusters is based on use
of mixture models. That is, for purposes of producing a clustering, one might
consider acting as if items x1,x2, . . . ,xr are realizations of r iid random vectors
with parametric marginal density

q (x|π,θ1, . . . ,θK) =

K∑
k=1

πkp (x|θk) (182)

for probabilities πk > 0 with
∑K
k=1 πk = 1, a fixed parametric density p (x|θ),

and parameters θ1, . . . ,θK . (Without further restrictions the family of mixture
distributions specified by density (182) is not identifiable, but we’ll ignore that
fact for the moment.)
A useful way to think about this formalism is in terms of a K-class clas-

sification model where values of y are latent/unobserved/completely fictitious.
This produces density (182) as the marginal density of x. Further, in the model
including a latent y

P [y = k|x] =
πkp (x|θk)∑K
k=1 πkp (x|θk)

is the (Bayes posterior) probability that x was generated by component k of
the mixture. It then would make sense to define cluster k to be the set of xi
for which

k = arg max
l

πlp (xi|θl)∑K
k=1 πkp (xi|θk)

= arg max
l

πlp (xi|θl)

This is the set of xi that would be classified to class k by the optimal (Bayes)
classifier.
In practice, π,θ1, . . . ,θK must be estimated and estimates used in place of

parameters in defining clusters. That is, an implementable clustering method
is to define cluster k (say, Ck) to be

Ck =

{
xi|k = arg max

l
π̂lp
(
xi|θ̂l

)}
(183)

Given the lack of identifiability in the unrestricted mixture model, it might
appear that prescription (183) could be problematic. But such is not really the
case. While the likelihood

L (π,θ1, . . . ,θK) =

r∏
i=1

q (xi|π,θ1, . . . ,θK)

will have multiple maxima, using any maximizer for an estimate of the parameter
vector will produce the same set of clusters (183). It is common to employ the
"EM algorithm" in the maximization of L (π,θ1, . . . ,θK) (the finding of one
of many maximizers) and to include details of that algorithm in expositions
of model-based clustering. However, strictly speaking, that algorithm is not
intrinsic to the basic notion here, namely the use of the clusters in display (183).
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17.2.4 Biclustering

An interesting and often useful variant of the clustering problem is one in which
a doubly indexed set of observations xij for i = 1, 2, . . . , I and j = 1, 2, . . . , J
(that might be thought of as laid out in an I × J two-way array or table) needs
to be simultaneously be put into R (row) clusters over index i and C (columns)
clusters over index j in such a way that the R×C cells are each homogeneous.
Figure 42 portrays an I = 6 by J = 12 toy example with values of 72 univariate
xij portrayed in "heat map" fashion. The object of simple biclustering is to
regroup/rearrange rows and columns to make groups producing homogeneous
"cells." We’ll use the notation r (i) for the row cluster index for data row i and
c (j) for the column cluster index for data column j.

Figure 42: A toy 6 × 12 dataset clustered into R = 2 row clusters and C = 3
column clusters. (From Li, Reisner, Pham, Olafsson and Vardeman.) Values
of xis are portrayed in heat map fashion.

An Alternating Shuffl ing Algorithm An "alternating shuffl ing" algorithm
of Li et al. for finding R good sets of rows and simultaneously C good sets of
columns is based on a series of R×C matrices of meansM = (mrc) and R row
vectors of length J and C column vectors of length I with entries from rows
and columns ofM .

1. One begins with some clustering of rows of the data matrix into R clusters
and columns of the data matrix into C clusters, and computes for each
(r, c) "cell" a sample mean of xijs with r (i) = r and c (j) = c (with row
i in row cluster r and column j in column cluster c) creating an initial
matrixM .

2. For each r = 1, 2, . . . , R one makes a new (J-dimensional) row vector
"center" vr with jth entry mrc(j) assigned and re-clusters all rows in
"K-means" fashion (assigning each row of values xij to the closest center
using squared Euclidean <J distance). With this new row clustering one
recomputes the matrix of meansM .
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3. For each c = 1, 2, . . . , C one makes a new (I-dimensional) column vector
"center"wc with ith entrymr(i)c and re-clusters all columns in "K-means"
fashion (assigning each column of values xij to the closest center using
squared Euclidean <I distance). With this new column clustering one
recomputes the matrix of meansM .

4. If
∑
i,j

(
xij −mr(i)c(j)

)2
is small and/or has ceased to decline with itera-

tions, the algorithm terminates. Otherwise it returns to step 2.

Various "tweaks" are applied to this algorithm to deal with the eventuality
that row or column clusters go empty. Multiple random starts are employed in
the search of a good biclustering. The issue of what R and C should be used
involves weighing complexity (large numbers of clusters) against a small value
of the cell inhomogeneity criterion of step 4. All of this said, the algorithm
is simple and effective, and appropriate modification of it allows the direct
handling of even cases where not every cell of the I × J table is full.

Chakraborty’s Bayes Biclustering The dissertation of Abhishek Chakraborty
takes a Bayes modeling and analysis approach to biclustering univariate obser-
vations xij . To the notation above, add model parameters µrc for r = 1, . . . , R
and c = 1, . . . , C, and γ2 > 0 and adopt a data model that given these parame-
ters the I × J observations xij are independent with

xij ∼ N
(
µr(i)c(j), γ

2
)

Chakraborty’s Bayes analysis then sets priors of independence for the vector
r = (r (1) , r (2) , . . . , r (I)), the vector c = (c (1) , c (2) , . . . , c (J)), and the R×C
means µrc.

A useful prior distribution for the means µrc is one of iid N
(
0, ρ2

)
variables

for a parameter ρ2 > 0. Useful priors for r and c are based on "Polya urn
schemes." Take the case of r. Let

nq (r) = # [r (i) = q for i = 1, 2, · · · , I]

and for an α > 0 consider the distribution with pmf

g (r) =

(
I∏
i=1

1

α+ i− 1

) ∏
q s.t. nq(r)>0

((α
I

)(α
I

+ 1
)
· · ·
(α
I

+ nq (r)− 1
))

This symmetric distribution has the conditional distribution that

g (r (I) = r|r (1) , r (2) , . . . , r (I − 1)) =
α
I + # [r (i) = r for i = 1, 2, · · · , I − 1]

α+ I − 1

The case of a prior h (c) is completely analogous. The parameters γ2, ρ2, and
α are treated as tuning parameters for the analysis.
This probability structure admits very simple Gibbs MCMC sampling and

provides iterates from the posterior distribution over all of the means and (more
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importantly) over the biclustering specified by the pair (r, c). For a given pair
(r, c), rows i and i′ with r (i) = r (i′) are clustered together, and columns j
and j′ with with c (j) = c (j′) are clustered together. Observations xij and
xi′j′ with both r (i) = r (i′) and c (j) = c (j′) are in the same "cell" of the two-
way clustering. The MCMC provides (through simple relative frequencies for
iterates (r, c)

j) approximate posterior probabilities that each pair of rows, each
pair of columns, and each pair observations belong together in a clustering.
There are various ways to make use of the iterates representing the posterior

distribution. One is to carry along with MCMC iterates (r, c)
j iterates of the

means matrix M (from the Li et al. algorithm) and identify an iterate with
minimum

∑
i,j

(
xij −mr(i)c(j)

)2
, using that iterate to represent the posterior

distribution. Another (preferable) option is to identify a "central" iterate as
follows. For two pairs (r, c) and (r∗, c∗) one measure of their total disagreement
in clustering of the xijs is

L ((r, c) , (r∗, c∗))

=
∑

(i,j),(i′,j′)

I [r (i) = r (i′) and c (j) = c (j′)] I [r∗ (i) 6= r∗ (i′) or c∗ (j) 6= c∗ (j′)]

+
∑

(i,j),(i′,j′)

I [r (i) 6= r (i′) or r (j) 6= c (j′)] I [r∗ (i) = r∗ (i′) and c∗ (j) = c (j′)]

the total number of xij clustered together by only one of the two associated
biclusterings. For fixed (r, c) one might take

L ((r, c)) = L
(

(r, c) , (r, c)
j
)

to be the arithmetic average across MCMC iterates of disagreement between
clusterings of the xijs prescribed by (r, c). and by the iterates. An (r, c)
minimizing this is a kind of central biclustering for representing the posterior,
and while exact optimization of L ((r, c)) is computationally too hard, simply

picking an iterate with smallest L
(

(r, c)
j
)
seems to be an effective way to

represent the posterior and provide a single practically useful biclustering.
It is worth pointing out several things about this methodology. First, α is a

kind of "prior sample size" and controls the distribution of the number of non-
empty row (and column) clusters. Small α goes with posterior distributions
for r (or c) concentrated on possible values with relatively few implied row (or
column) clusters. Large α amounts to a prior for r (or c) with iid uniform
coordinates, typically giving large weight to r (or c) values with many implied
row (or column) clusters. Second, in this development, it is quite natural and
effective to use values of R and C that are only loose upper bounds for seemingly
appropriate numbers of row and column clusters, and let the analysis more or
less sort out what numbers are genuinely plausible (in terms of the posterior
distributions of non-zero nq (r) and nq (c)). Finally, it is possible to allow some
xijs to be unobserved in this development. In "missing at random" contexts,
unobserved xijs can simply be treated as latent or auxiliary in the MCMC. And
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for other contexts, modeling of censoring mechanisms provides Bayes analyses
where missingness is informative about the value of an unobserved xij .

17.2.5 Self-Organizing Maps

For items x1,x2, . . . ,xr belonging to <p, the object here is to find L × M
cluster centers/prototypes that adequately represent the items, where one wishes
to think of those cluster centers/prototypes as indexed on an L ×M regular
grid in 2 dimensions (that one might take to be {1, 2, . . . , L} × {1, 2, . . . ,M})
with cluster centers/prototypes whose index vectors are close on the grid being
close in <p. (There could, of course, be 3-dimensional versions of this, and
so on.) The object is both production of the set of centers/prototypes and
assignment of data points to centers/prototypes. It thus amounts to some kind
of modified/constrained K = L×M group clustering problem and simultaneous
discovery of low-dimensional (typically 2-dimensional) structure in the items.
This is illustrated in cartoon fashion in Figure 43.

Figure 43: Cartoon of a Self-Organizing-Map assignment of points x in <p to
cluster centers, themselves mapped to points on a grid in <2.

One will typically begin with standardization of the p coordinate variables
xj (so that

∑
xi = 0 and the sample variance of each set of values {xij}i=1,2,...,r

is 1). This puts all of the xj on the same scale and doesn’t allow one coordinate
of an xi to dominate a Euclidean norm. Standard treatment of this topic seems
to be driven by two somewhat ad hoc algorithms of Kohonen. Here we’ll first
describe those algorithms and then discuss a Bayes approach to the problem
due to Zhou.

Kohonen’s Algorithms One begins with some set of initial cluster centers{
z0lm

}
l=1,...,L and m=1,...,M . This might be a random selection (without replace-

ment or the possibility of duplication) from the set of items. It might be a set
of grid points in the 2-dimensional plane in <p defined by the first two princi-
pal components of the items {xi}i=1,...,r. And there are surely other sensible
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possibilities. Then define neighborhoods on the L × M grid, N (l,m), that
are subsets of the grid "close" in some kind of distance (like regular Euclidean
distance) to the various elements of the L ×M grid. N (l,m) could be all of
the grid, (l,m) alone, all grid points (l′,m′) within some constant 2-dimensional
Euclidean distance of (l,m), etc. Then define a weighting function on <p, say
w (‖x‖), so that w (0) = 1 and w (‖x‖) ≥ 0 is monotone non-increasing in ‖x‖.
For some schedule of non-increasing positive constants 1 > α1 ≥ α2 ≥ α3 ≥ · · · ,
the SOM algorithms define iteratively sets of cluster centers/prototypes

{
zjlm

}
for j = 1, 2, . . ..
At iteration j, an "online" version of SOM selects (randomly or perhaps in

turn from an initially randomly set ordering of the items) an item xj and

1. identifies the center/prototype zj−1lm closest to xj in to <p, call it bj with
corresponding grid coordinates (l,m)

j (Izenman calls bj the "BMU" or
best-matching-unit),

2. adjusts those zj−1lm with index vectors belonging to N
(

(l,m)
j
)
(close to

the BMU index vector on the 2-dimensional grid) toward xj by the pre-
scription

zjlm = zj−1lm + αjw
(∥∥∥zj−1lm − bj

∥∥∥)(xj − zj−1lm

)
(adjusting those centers different from the BMU potentially less dramati-
cally than the BMU), and

3. for those zj−1lm with index pairs (l,m) not belonging N
(

(l,m)
j
)
sets

zjlm = zj−1lm

iterating to convergence.
At iteration j, a "batch" version of SOM updates all centers/prototypes{

zj−1lm

}
to
{
zjlm

}
as follows. For each zj−1lm , let X j−1lm be the set of items for

which the closest element of
{
zj−1lm

}
has index pair (l,m). Then update zj−1lm

as some kind of (weighted) average of the elements of ∪(l,m)′∈N (l,m)X j−1(l,m)′
(the

set of xi closest to prototypes with labels that are 2-dimensional grid neighbors
of (l,m)). A natural form of this is to set (with xj−1(l,m) the obvious sample mean

of the elements of X j−1lm )

zjlm =

∑
(l,m)′∈N (l,m) w

(∥∥∥zj−1lm − zj−1
(l,m)′

∥∥∥)xj−1(l,m)′∑
(l,m)′∈N (l,m) w

(∥∥∥zj−1lm − zj−1
(l,m)′

∥∥∥)
It is fairly obvious that even if these algorithms converge, different starting

sets
{
z0lm

}
will produce different limits (symmetries alone mean, for example,

that the choices z0lm = ulm and z0lm = uL−l,M−m produce what might look
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like different limits, but are really completely equivalent). Beyond this, what is
provided by the 2-dimensional layout of indices of prototypes is not immediately
obvious. It seems to be fairly common to compare an error sum of squares for
a SOM to that of a K = L×M means clustering and to declare victory if the
SOM sum is not much worse than the K-means value.

Zhou’s Bayesian SOM Dissertation work of Rick Zhou takes a principled
Bayesian modeling and decision-theoretic approach to the SOM objective. The
following is an overview of his methodology.
To develop a useful and "generative" model for x1,x2, . . . ,xr belonging to

<p, begin by defining p (one for each dimension of the data vectors) 0 mean
Gaussian spatial processes

ζ1 (u, v) , ζ2 (u, v) , . . . , ζp (u, v)

and set

ζ (u, v) =

 ζ1 (u, v)
...

ζp (u, v)


ζ (u, v) then defines a continuous random map <2 → <p. For L ×M points
ρ = (l,m) on an integer grid in <2 take ζ (l,m) as the center of a data-generating
mechanism in <p. Then assume that x1, . . . ,xr are iid as follows. First, one
of the L×M fixed points ρ = (l,m) on the grid of interest is chosen at random,
and then conditioned on this choice

x ∼ MVNp (ζ (ρ) ,Σρ)

Upon supplying suitable (values of or) prior distributions for the parameters of

the p Gaussian processes and priors for the covariance matrices Σl,m, MCMC
will for observable x1, . . . ,xr and corresponding latent ρ1, . . . ,ρr produce sam-
ples from a posterior distribution over all of

ρ1,ρ2, . . . ,ρr

ζj (ρ) for all points ρ in the grid and j = 1, 2, . . . , p

Σρ for all points ρ in the grid

What are of most interest are the grid points for the r cases, ρ1, . . . ,ρr. Two
cases xi and xi′ belong to the the same cluster if ρi = ρi′ . The MCMC
provides relative frequencies that approximate posterior probabilities that case
i and case i′ belong together, P [ρi = ρi′ ]. That is, one obtains an estimate Ĉ
of the matrix

C
r×r

= (P [ρi = ρi′ ]) i=1,2,...,r
i′=1,2,...,r

through MCMC relative frequencies. What one is then led to seek as a final
work product is an assignment of data points to grid points that
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1. is consistent with C, and

2. (at least locally) more or less preserves relative distances between clusters
in <p in terms of distances between corresponding grid points in <2.

For a potential assignment of data points to grid points α (that maps
{1, 2, . . . , r} to the set of indices ρ = (i, j) in the grid) we consider two types of
penalties, one for inconsistency with C and another for failure to preserve dis-
tances. First consider disagreement with C. A measure of disparity between
partitions of {1, 2, . . . , r} corresponding to ρ1, . . . ,ρr and to α1, . . . ,αr is for
a > 0 and b > 0

L ((ρ1, . . . ,ρr) , (α1, . . . ,αr)) =
∑
i<i′

aI [ρi = ρi′ and αi 6= αi′ ]

+
∑
i<i′

bI [ρi 6= ρi′ and αi = αi′ ]

The average of this with respect to the posterior distribution is

a
∑
i<i′

ci,i′ − (a+ b)
∑
i<i′

I [αi = αi′ ]

(
ci,i′ −

b

a+ b

)
so a plausible penalty for inconsistency with C is

R1 ((α1, . . . ,αr) ,C, λ) =
1

r (r − 1)

∑
n<n′

I [αi = αi′ ] (λ− ci,i′)

In the penalty R1 ((α1, . . . ,αr) ,C, λ) the parameter λ ∈ (0, 1) determines what
kinds of partitions of {1, 2, . . . , r} are most heavily penalized. Large λ tends
to heavily penalize (α1, . . . ,αr) prescribing large clusters, and small λ tends to
heavily penalize (α1, . . . ,αr) with small clusters.
Consider then penalizing failure to preserve distances. Define maximum

distances

Mgrid = max
ρ and ρ′ on the grid

‖ρ− ρ′‖ and

Mdata = max
i,i′
‖xi − xi′‖

And define for r ∈ {1, 2, . . . ,K} the sets NK consisting of those pairs i and i′

such that at least one of the points xi and xi′ is in the K-nearest neighborhood
of the other. Then, a "local multi-dimensional scaling" type penalty45 to apply
to a potential assignment of data points to grid points is

R2 ((α1, . . . ,αr) ,K, τ) =
1

K2



∑
i<i′ s.t.

(i,i′)∈NK

(
‖xi−xi′‖
Md a t a

− ‖αi−αi′‖Mg r id

)2
−τ

∑
i<i′ s.t.

(i,i′)/∈NK

‖αi−αi′‖
Mg r id


45See Section 17.3.

217



for a τ > 0. (The first term penalizes failure to preserve local relative distances
and the second encourages separation of mappings to points on the grid that
are not neighbors in the <p dataset.)
So, in looking for a map α that is consistent with the posterior distribution

and preserves local relative distances, a risk/figure of merit is for λ > 0

R
(

(α1, . . . ,αr) , Ĉ, λ,K, γ, τ
)

= R1

(
(α1, . . . ,αr) , Ĉ, λ

)
+γR2 ((α1, . . . ,αr) ,K, τ)

Exact optimization of R
(

(α1, . . . ,αr) , Ĉ, λ,K, γ, τ
)
by choice of (α1, . . . ,αr)

is in general an NP-hard problem and is thus rarely possible. What is possible
and seems to work remarkably well is to make a long MCMC run (making one’s

estimate Ĉ reliable) and then look for an MCMC iterate
(
ρj1, . . . ,ρ

j
r

)
with the

best value of R
((
ρj1, . . . ,ρ

j
r

)
, Ĉ, λ,K, γ, τ

)
. The dissertation of Zhou provides

substantial examples of the effectiveness of this strategy. The Bayes model
behind the MCMC simply tends to concentrate the posterior (and thus make
iterates) in a manner consistent with the clustering and distance preservation
goals of SOM.
The famous "Wines" dataset has p = 13 chemical characteristics of r = 178

wine samples from 3 different cultivars (59 (red) samples. 71 (blue) samples, and
48 (violet) of the three types indexed 1-59, 60-130, and 131-178 respectively).
Figure 44 is a graphical (grey-scale) representation of Ĉ and a corresponding

best iterate
(
ρj1, . . . ,ρ

j
r

)
.

Figure 44: Bayes SOM representation of clustering of chemical characteristics
vectors for r = 178 wine samples from 3 different cultivars. (From the PhD
dissertation of Zhou.)

17.3 Multi-Dimensional Scaling

This material begins (as in Section 17.2) with dissimilarities among N items,
dij , that might be collected in an N ×N proximity matrix D = (dij). (These
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might, but do not necessarily, come from Euclidean distances among N data
vectors x1,x2, . . . ,xN in <p.) The object of multi-dimensional scaling is to (to
the extent possible) represent the N items as points z1, z2, . . . ,zN in <q with

‖zi − zj‖ ≈ dij

This is phrased precisely in terms of one of several optimization problems, where
one seeks to minimize a "stress function" S (z1, z2, . . . ,zN ).

The least squares (or Kruskal-Shepard) stress function (optimization crite-
rion) is

SLS (z1, z2, . . . ,zN ) =
∑
i<j

(dij − ‖zi − zj‖)2

This criterion treats errors in reproducing big dissimilarities exactly like it treats
errors in reproducing small ones. A different point of view would make faith-
fulness to small dissimilarities more important than the exact reproduction of
big ones. The so-called Sammon mapping criterion

SSM (z1, z2, . . . ,zN ) =
∑
i<j

(dij − ‖zi − zj‖)2

dij

reflects this point of view.
Another approach to MDS that emphasizes the importance of small dissimi-

larities is discussed in HTF under the name of "local multi-dimensional scaling."
Here one begins for fixed k with the symmetric set of index pairs

Nk =

{
(i, j) | the number of j′ with dij′ < dij is less than k

or the number of i′ with di′j < dij is less than k

}
(an index pair is in the set if one of the items is in the k-nearest neighbor neigh-
borhood of the other). Then a stress function that emphasizes the matching of
small dissimilarities and not large ones is (for some choice of τ > 0)

SL (z1, z2, . . . ,zN ) =
∑

i<j and (i,j)∈Nk

(dij − ‖zi − zj‖)2− τ
∑

i<j and (i,j)/∈Nk

‖zi − zj‖

Another version of MDS begins with similarities sij (rather than with dis-
similarities dij). (One important special case of similarities derives from vectors
x1,x2, . . . ,xN in <p through centered inner products sij ≡ 〈xi − x,xj − x〉.)
A "classical scaling" criterion is

SC (z1, z2, . . . ,zN ) =
∑
i<j

(sij − 〈zi − z, zj − z〉)2

HTF claim that if in fact similarities are centered inner products, classical scal-
ing is exactly equivalent to principal components analysis.
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The four scaling criteria above are all "metric" scaling criteria in that the
distances ‖zi − zj‖ are meant to approximate the dij directly. An alternative
is to attempt minimization of a non-metric stress function like

SNM (z1, z2, . . . ,zN ) =

∑
i<j (θ (dij)− ‖zi − zj‖)2∑

i<j ‖zi − zj‖
2

over vectors z1, z2, . . . ,zN and increasing functions θ (·). θ (·) will preserve/enforce
the natural ordering of dissimilarities without attaching importance to their pre-
cise values. Iterative algorithms for optimization of this stress function alternate
between isotonic regression to choose θ (·) and gradient descent to choose the
zi.
In general, if one can produce a small value of stress in MDS, one has discov-

ered a q-dimensional representation of N items, and for small q, this is a form
of "simple structure."

17.4 More on Principal Components and Related Ideas

Here we extend the principal components ideas first raised in Section 2.4 based
on the SVD ideas of Section 2.3, still with the motivation of using it as means
for identifying simple structure in an N -case p-variable dataset, where as earlier,
we write

X
N×p

=


x′1
x′2
...
x′N


17.4.1 "Sparse" Principal Components

In standard principal components analysis, the vj are sometimes called "load-
ings" because (in light of the fact that zj = Xvj) they specify what linear
combinations of variables xj are used in making the various principal compo-
nent vectors. If the vj were "sparse" (had lots of 0s in them) interpretation of
these loadings would be easier. So people have made proposals of alternative
methods of defining "principal components" that will tend to produce sparse
results. One due to Zou is as follows.
One might call a v ∈ <p a first sparse principal component "direction"46 if

it is part of a minimizer (over choices of v ∈ <p and θ ∈ <p with ‖θ‖ = 1) of
the criterion

N∑
i=1

∥∥xi − θx′iv∥∥2 + λ ‖v‖2 + λ1 ‖v‖1 (184)

for ‖·‖1 the l1 norm on <p and constants λ ≥ 0 and λ1 ≥ 0. The last term in this
expression is analogous to the lasso penalty on a vector of regression coeffi cients

46We put quotes on "direction" because in this formulation v will typically not be a unit
vector.
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as considered in Section 3.1.2, and produces the same kind of tendency to "0
out" entries that we saw in that context. If λ1 = 0, v, is proportional to the
ordinary first principal component direction. In fact, if λ = λ1 = 0 and N > p,
v = θ the ordinary first principal component direction is the optimizer.

For multiple components, an analogue of the first case is a set of K vectors
vk ∈ <p organized into a p × K matrix V that is part of a minimizer (over
choices of p × K matrices V and p × K matrices Θ with Θ′Θ = I) of the
criterion

N∑
i=1

∥∥xi −ΘV ′xi
∥∥2 + λ

K∑
k=1

‖vk‖2 +

K∑
k=1

λ1k ‖vk‖1 (185)

for constants λ ≥ 0 and λ1k ≥ 0. Zou has apparently provided effective
algorithms for optimizing criteria (184) or (185).

17.4.2 Non-negative Matrix Factorization

There are contexts (for example, when data are counts) where it may not make
intuitive sense to center inherently non-negative variables, so thatX is naturally
non-negative, and one might want to find non-negative matricesW andH such
that

X
N×p

≈ W
N×r

H
r×p

Here the emphasis might be on the columns of W as representing "positive
components" of the (positive) X, just as the columns of the matrix UD in
SVDs provide the principal components of X. Various optimization criteria
could be set to guide the choice of W and H. One might try to minimize

N∑
i=1

p∑
j=1

(
xij − (WH)ij

)2
or maximize

N∑
i=1

p∑
j=1

(
xij ln (WH)ij − (WH)ij

)
over non-negative choices of W and H, and various algorithms for doing these
have been proposed. (Notice that the second of these criteria is an extension
of a loglikelihood for independent Poisson variables with means entries inWH
to cases where the xij need only be non-negative, not necessarily integer.)
While at first blush this enterprise seems sensible, there is a lack of unique-

ness in a factorization producing a product WH, and therefore how to inter-
pret the columns of one of the many possible W s is not clear. (An easy way
to see the lack of uniqueness is this. Suppose that all entries of the product
WH are positive. Then for E a small enough (but not 0) matrix, all entries
of W ∗ ≡ W (I +E) 6= W and H∗ ≡ (I +E)

−1
H 6= H are positive, and

W ∗H∗ = WH.) Lacking some natural further restriction on the factors W
and H (beyond non-negativity) it seems the practical usefulness of this basic
idea is also lacking.
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17.4.3 Archetypal Analysis

Another approach to finding an interpretable factorization of X was provided
by Cutler and Breiman in their "archetypal analysis." Again one means to write

X
N×p

≈ W
N×r

H
r×p

for appropriateW andH. But here two restrictions are imposed, namely that

1. the rows of W are probability vectors (so that the approximation to X
is in terms of convex combinations/weighted averages of the rows of H),
and

2. H
r×p

= B
r×N

X
N×p

where the rows of B are probability vectors (so that the

rows ofH are in turn convex combinations/weighted averages of the rows
of X).

The r rows of H = BX are the "prototypes" (?archetypes?) used to represent
the data matrix X.
With this notation and restrictions, (stochastic matrices) W and B are

chosen to minimize
‖X −WBX‖2

It’s clearly possible to rearrange the rows of a minimizing B and make corre-
sponding changes inW without changing ‖X −WBX‖2. So strictly speaking,
the optimization problem has multiple solutions. But in terms of the set of rows
of H (a set of prototypes of size r) it’s possible that this optimization problem
often has a unique solution. (Symmetries induced in the set of N rows of X
can be used to produce examples where it’s clear that genuinely different sets of
prototypes produce the same minimal value of ‖X −WBX‖2. But it seems
likely that real datasets will usually lack such symmetries and lead to a single
optimizing set of prototypes.)
Emphasis in this version of the "approximate X" problem is on the set of

prototypes as "representative data cases." This has to be taken with a grain of
salt, since they are nearly always near the "edges" of the dataset. This should
be no surprise, as line segments between extreme cases in <p can be made to
run close to cases in the "middle" of the dataset, while line segments between
interior cases in the dataset will never be made to run close to extreme cases.

17.4.4 Independent Component Analysis

We begin by supposing (as before) that X has been centered. For simplicity,
suppose also that it is full rank (rank p). With the SVD as before

X
N×p

= U
N×p

D
p×p

V ′
p×p

we consider the "sphered" version of the data matrix

X∗ =
√
NXVD−1
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so that the sample covariance matrix of the data is

1

N

(
X∗′X∗

)
= I

Note that the columns of X∗ are then scaled principal components of the (cen-
tered) data matrix and we operate with and onX∗. (For simplicity of notation,
we’ll henceforth drop the "∗" on X.) This methodology seems to be an at-
tempt to find latent probabilistic structure in terms of independent variables to
account for the principal components.
In particular, in its linear form, ICA attempts to model the N (transposed)

rows of X as iid of the form
xi
p×1

= A
p×p

si
p×1

(186)

for iid vectors si, where the (marginal) distribution of the vectors si is one of
independence of the p coordinates/components and the matrixA is an unknown
parameter. Consistent with our sphering of the data matrix, we’ll assume
that Covx = I and without any loss of generality assume that the covariance
matrix for s is not only diagonal, but that Covs = I. Since then I =Covx =
A (Covs)A′ = AA′, A must be orthogonal, and so

A′x = s

Obviously, if one can estimate A with an orthogonal Â then ŝi ≡ Â
′
xi

serves as an estimate of what vector of independent components led to the ith
row of X and indeed

Ŝ ≡XÂ

has columns that provide predictions of the N (row) p-vectors s′i, and we might
thus call those the "independent components" ofX (just as we term the columns
of XV the principal components of X). There is a bit of arbitrariness in
the representation (186) because the ordering of the coordinates of s and the
corresponding rows of A is arbitrary. But this is no serious concern.
So then, the question is what one might use as a method to estimate A in

display (186). There are several possibilities. The one discussed in HTF
is related to entropy and Kullback-Leibler distance. If one assumes that
a (m-dimensional) random vector Y has a density p with marginal densities
p1, p2, . . . , pm then an "independence version" of the distribution of Y has den-

sity
m∏
j=1

pj and the (non-negative) K-L divergence of the distribution of Y from
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its independence version is

KL

p, m∏
j=1

pj

 =

∫
p (y) ln

 p (y)
m∏
j=1

pj (yj)

 dy

=

∫
p (y) ln p (y) dy −

m∑
j=1

∫
p (y) (ln pj (yj)) dy

=

∫
p (y) ln p (y) dy −

m∑
j=1

∫
pj (yj) (ln pj (yj)) dyj

=

m∑
j=1

H (Yj)−H (Y )

for H the entropy function for a random argument. Since entropy is an inverse
measure of information for a distribution, this K-L divergence is a difference in
the information carried by Y (jointly) and the sum across the components of
their individual information contents. If it is small, one might loosely interpret
the components of Y as approximately independent.
If one then thinks of s as random and of the form A′x for random x, it is

perhaps sensible to seek an orthogonal A to minimize (for for aj the jth column
of A)

p∑
j=1

H (sj)−H (s) =

p∑
j=1

H
(
a′jx

)
−H

(
A′x

)
=

p∑
j=1

H
(
a′jx

)
−H (x)− ln |detA|

=

p∑
j=1

H
(
a′jx

)
−H (x)

As it turns out, this is equivalent (for orthogonal A) to maximization of

C (A) =

p∑
j=1

(
H (z)−H

(
a′jx

))
(187)

for z standard normal. Then a common approximation is apparently(
H (z)−H

(
a′jx

))
≈
(
EG (z)− EG

(
a′jx

))2
for G (u) ≡ 1

c ln cosh (cu) for a c ∈ [1, 2]. Then, criterion (187) has the empirical
approximation

Ĉ (A) =

p∑
j=1

(
EG (z)− 1

N

N∑
i=1

G
(
a′jx

′
i

))2
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where, as usual, x′i is the ith row of X. Â can be taken to be an optimizer of
Ĉ (A).
Ultimately, this development produces a rotation matrix that makes the p

entries of rotated and scaled principal component score vectors "look as inde-
pendent as possible." This is thought of as resolution of a data matrix into its
"independent sources" and as a technique for "blind source separation."

17.4.5 Principal Curves and Surfaces

In the context of Section 2.4, the line in <p defined by {cv1|c ∈ <} serves as a
best straight line representative of the dataset. Similarly, the "plane" in <p
defined by {c1v1 + c2v2|c1 ∈ <, c1 ∈ <} serves as a best "planar" representative
of the dataset. The notions of "principal curve" and "principal surface" are
attempts to generalize these ideas to 1-dimensional and 2-dimensional structures
in <p that may not be "straight" or "flat" but rather have some curvature.

A parametric curve in <p is represented by a vector-valued function

h (t) =


h1 (t)
h2 (t)
...

hp (t)


defined on some interval [0, T ], where we assume that the coordinate functions
hj (t) are smooth. With

h′ (t) =


h′1 (t)
h′2 (t)
...

h′p (t)


the "velocity vector" for the curve,

∥∥h′ (t)∥∥ is then the "speed" for the curve
and the arc length (distance) along h(t) from t = 0 to t = t′ is

Lh (t′) =

∫ t′

0

∥∥h′ (t)∥∥ dt
In order to set an unambiguous representation of a curve, it will be useful to
assume that it is parameterized so that it has unit speed, i.e. that Lh (t′) = t′

for all t′ ∈ [0, T ]. Notice that if it does not, for (Lh)
−1 the inverse of the arc

length function, the parametric curve

g (λ) = h
(

(Lh)
−1

(λ)
)
for λ ∈ [0, Lh (T )] (188)

does have unit speed and traces out the same set of points in <p that are traced
out by h(t). So there is no loss of generality in assuming that parametric
curves we consider here are parameterized by arc length, and we’ll henceforth
write h(λ).
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Then, for a unit speed parametric curve h(λ) and point x ∈ <p, we’ll define
the projection index

λh (x) = sup
λ

{
λ| ‖x− h (λ)‖ = inf

λ
‖x− h (λ)‖

}
(189)

This is roughly the last arc length for which the distance from x to the curve is
minimum. If one thinks of x as random, the "reconstruction error"

E ‖x− h (λh (x))‖2

(the expected squared distance between x and the curve) might be thought of
as a measure of how well the curve represents the distribution. Of course, for
a dataset containing N cases xi, an empirical analog of this is

1

N

N∑
i=1

‖xi − h (λh (xi))‖2 (190)

and a "good" curve representing the dataset should have a small value of this
empirical reconstruction error. Notice however, that this can’t be the only
consideration. If it was, there would sure be no real diffi culty in running a
very wiggly (and perhaps very long) curve through every element of a dataset
to produce a curve with 0 empirical reconstruction error. This suggests that
with

h′′ (λ) =


h′′1 (λ)
h′′2 (λ)
...

h′′p (λ)


the curve’s "acceleration vector," there must be some kind of control exercised
on the curvature,

∥∥h′′ (λ)
∥∥, in the search for a good curve. We’ll note below

where this control is implicitly applied in standard algorithms for producing
principal curves for a dataset.
Returning for a moment to the case where we think of x as random, we’ll say

that h(λ) is a principal curve for the distribution of x if it satisfies a so-called
self-consistency property, namely that

h (λ) = E [x|λh (x) = λ] (191)

This provides motivation for an iterative 2-step algorithm to produce a "prin-
cipal curve" for a dataset.
Begin iteration with h0 (λ) the ordinary first principal component line for

the dataset. Specifically, do something like the following. For some choice
T > 2 max

i=1,...,N
|〈xi,v1〉| begin with

h0 (λ) =

(
λ− T

2

)
v1
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to create a unit-speed curve that extends past the dataset in both directions
along the first principal component direction in <p. Then project the xi onto
the line to get N values

λ1i = λh0 (xi) = 〈xi,v1〉+
T

2

and in light of the criterion (191) more or less average xi with corresponding
λh0 (xi) near λ to get h1 (λ). A specific possible version of this is to consider,
for each coordinate, j, the N pairs{(

λ1i , xij
)}

and to take as h1j (λ) a function on [0, T ] that is a 1-dimensional cubic smoothing
spline. One may then assemble these into a vector function to create h1 (λ).
NOTICE that implicit in this prescription is control over the second deriva-
tives of the component functions through the stiffness parameter/weight in the
smoothing spline optimization. Notice also that for this prescription, the unit-
speed property of h0 (λ) will not carry over to h1 (λ) and it seems that one must
use the idea (188) to assure that h1 (λ) is parameterized in terms of arc length

on
[
0,
∫ T
0

∥∥h1 (λ)
∥∥ dλ].

With iterate hm−1 (λ) in hand, one projects the xi onto the curve to get N
values

λmi = λhm−1 (xi)

and for each coordinate j considers the N pairs

{(λmi , xij)}

Fitting a 1-dimensional cubic smoothing spline to these produces hmj (λ), and
these functions are assembled into a vector to create hm (λ) (which may need
some adjustment via relationship (188) to assure that the curve is parameterized
in terms of arc length). One iterates until the empirical reconstruction error
(190) converges, and one takes the corresponding hm (λ) to be a principal curve.
Notice that which stiffness parameter is applied in the smoothing steps will
govern what one gets for such a curve.
There have been efforts to extend principal curves technology to the creation

of 2-dimensional principal surfaces. Parts of the extension are more or less clear.
A parametric surface in <p is represented by a vector-valued function

h (t) =


h1 (t)
h2 (t)
...

hp (t)


for t ∈ S ⊂ <2. A projection index parallel to form (189) and self-consistency
property parallel to that in display (191) can clearly be defined for the surface
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case, and thin plate splines can replace 1-dimensional cubic smoothing splines
for producing iterates of coordinate functions. But ideas of unit-speed don’t
have obvious translations to <2 and methods here seem fundamentally more
complicated than what is required for the 1-dimensional case.

17.5 (Original) Google PageRanks

This might be thought of as of some general interest beyond the particular appli-
cation of ranking Web pages, if one abstracts the general notion of summarizing
features of a directed graph with N nodes (N Web pages in the motivating
application) where edges point from some nodes to other nodes (there are links
on some Web pages to other Web pages). The basic idea is that one wishes to
rank the nodes (Web pages) by some measure of importance.
If i 6= j define

Lij =

{
1 if there is a directed edge pointing from node j to node i
0 otherwise

and define

cj =

N∑
i=1

Lij = the number of directed edges pointed away from node j

(There is the question of how we are going to define Ljj . We may either declare
that there is an implicit edge pointed from each node j to itself and adopt the
convention that Ljj = 1 or we may declare that all Ljj = 0.)
A node (Web page) might be more important if many other (particularly,

important) nodes have edges (links) pointing to it. The Google PageRanks
ri > 0 are chosen to satisfy47

ri = (1− d) + d
∑
j

(
Lij
cj

)
rj (192)

for some d ∈ (0, 1) (producing minimum rank (1− d)). (Apparently, a standard
choice is d = .85.) The question is how one can identify the ri.48

Without loss of generality, with

r =

 r1
...
rN


47There is the question of what

Lij
cj

should mean in case cj = 0. We’ll presume that the

meaning is that the ratio is 0.
48These are, of course, simply N linear equations in the N unknowns ri, and for small N

one might ignore special structure and simply solve these numerically with a generic solver.
In what follows we exploit some special structure.
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we’ll assume that r′1 = N so that the average rank is 1. Then, for

dj =


1

cj
if cj 6= 0

0 if cj = 0

define the N × N diagonal matrix D = diag (d1, d2, . . . , dN ). (Clearly, if we
use the Ljj = 1 convention, then dj = 1/cj for all j.) Then in matrix form, the
N equations (192) are (for L = (Lij)i=1,...,N

j=1,...,N
)

r = (1− d) 1 + dLDr

=

(
1

N
(1− d) 11′ + dLD

)
r

(using the assumption that r′1 = N). Let

T =

(
1

N
(1− d) 11′ + dLD

)
so that r′T ′ = r′.
Note all entries of T are non-negative and that

T ′1 =

(
1

N
(1− d) 11′ + dLD

)′
1

=
1

N
(1− d) 11′1 + dDL′1

= (1− d) 1 + dD


c1
c2
...
cN


so that if all cj > 0, T ′1 = 1. We have this condition as long as we either limit
application to sets of nodes (Web pages) where each node has an outgoing edge
(an outgoing link) or we decide to count every node as pointing to itself (every
page as linking to itself) using the Ljj = 1 convention. Henceforth suppose
that indeed all cj > 0.

Under this assumption, T ′ is a stochastic matrix (with rows that are prob-
ability vectors), the transition matrix for an irreducible aperiodic finite state
Markov Chain. Defining the probability vector

p =
1

N
r

it then follows that since p′T ′ = p′ the PageRank vector is N times the sta-
tionary probability vector for the Markov Chain. This stationary probability
vector can then be found as the limit of any row of(

T ′
)n
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as n→∞.

Part VI

Miscellanea
18 Graphs as Representing Independence Rela-

tionships in Multivariate Distributions

The most coherent approaches to statistical machine learning are ultimately
based on probability models for the generation of all of (x, y) and additionally
"all" other "relevant" unobserved/latent variables. Even for small N , such
multivariate distributions are in general impossibly complicated and impossible
to detail on the basis of a training set. Only by making simplifying assumptions
can progress be made. Graphs are often called upon to organize and represent
useful simplifying assumptions about conditional independence between various
of the variables to be jointly modeled, and their use is sometime treated as an
important part of machine learning.
Random quantities X and Y are conditionally independent given Z

written
X ‖Y |Z

provided densities factor as

fX,Y |Z (x, y|z) = fX|Z (x|z) fY |Z (y|z)

A basic result about conditional independence is that

X ‖Y |Z ⇐⇒ fX|Y,Z (x|y, z) = fX|Z (x|z)

Conditional independence (like ordinary independence) has some impor-
tant/useful properties/implications. Among these are

1. X ‖Y |Z ⇒ Y ‖X |Z,

2. X ‖Y |Z and U = h (X)⇒ U ‖Y |Z,

3. X ‖Y |Z and U = h (X)⇒ X ‖Y |Z,U ,

4. X ‖Y |Z and X ‖W | (Y, Z)⇒ X ‖ (W,Y ) |Z, and

5. X ‖Y |Z and X ‖Z |Y ⇒ X ‖ (Y,Z).

A possibly more natural (but equivalent) version of property 3. is

X ‖Y |Z and U = h (X)⇒ Y ‖ (X,U) |Z
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Amain goal of this material is representing aspects of large joint distributions
in ways that allow one to "see" conditional independence relationships in graphs
representing them and to construct correspondingly simple joint and conditional
densities for variables. In this section we will provide a brief introduction to
the simplest ideas in this enterprise. More on the topics can be found in
books by Murphy, by Wasserman, and by Lauritzen. We’ll first consider what
relationships are typically represented using directed graphs, and then what
relationships are represented using undirected graphs.

18.1 Some Considerations for Directed Graphical Models

A directed graph (that might potentially represent some aspects of the joint
distribution of (X,Y, Z, . . .)) consists of nodes (or vertices) X,Y, Z, . . . and ar-
rows (or edges) pointing between some of them. A corresponding probability
model for (X,Y, Z, . . .) can variously be known as a directed graphical model,
aBayes network (though there is nothing intrinsically Bayesian about this ma-
terial), a belief network (though there need be nothing subjective about what
it represents), or a causal network (though again, there is nothing inherently
causal about what it represents).
For a graph with nodes/vertices X,Y, Z, . . .

1. if an arrow points from X to Y we will say that X is a parent of Y and
that Y is a child of X,

2. a sequence of arrows beginning at X and ending at Y will be called a
directed path from X to Y ,

3. if X = Y or there is a directed path from X to Y , we will say that X is
an ancestor of Y and Y is a descendent of X,

4. a directed path that starts and ends at the same vertex is called a cycle,
and

5. a directed graph is acyclic if it has no cycles.

As a matter of notation/shorthand an acyclic directed graph is usually called a
DAG (a directed acyclic graph) although the corresponding word order is not
really as good as that corresponding to the unpronounceable acronym "ADG."

Figure 45: A DAG.
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In Figure 45, X is a parent of Y and an ancestor of W . There is a directed
path from X to W . Y is a child of both X and Z.
For a vector of random quantities (and vertices) X = (X1, X2, . . . , Xk) and

a distribution P forX, it is said that a DAG G represents P (or P isMarkov
to G) if and only if densities satisfy

pX (x) =

k∏
i=1

p (xi|parentsi) (193)

where
parentsi = {parents of Xi in the DAG G}

So a joint distribution P for (X,Y, Z,W ) is represented by the DAG pictured
in Figure 45 if and only if

pX,Y,Z,W (x, y, z, w) = pX (x) pZ (z) pY |X,Z (y|x, z) pW |Y (w|y) (194)

A condition equivalent to the Markov condition can be stated in terms of
conditional independence relationships. That is, let X̃i stand for the set of all
vertices X1, X2, . . . , Xk in a DAG G except for the parents and descendents of
Xi. Then

P is represented by G ⇔ for every vertex Xi, Xi ‖ X̃i | parentsi (195)

So, for example, if a joint distribution P for (X,Y, Z,W ) is represented by the
DAG pictured in Figure 45 it follows that

X ‖Z and W ‖ (X,Z) |Y

Condition (195) provides a way to simply identify some conditional indepen-
dence relationships implied by a DAG representation of a joint distribution P .
Upon introducing some more concepts and machinery (concerning "connected-
ness" and "separatedness" of vertices of a DAG) other conditional independence
relationships that will always hold for P represented by G can be identified.
We refer the interested reader to the the books of Murphy, Wasserman, and
Lauritzen for more details. Rather than going further into the probabilistic
implications of various types of structure possessed by a DAG G representing a
distribution P , we will here simply consider in broad terms the practical impli-
cations and diffi culties associated with adopting a directed graphical model.
In the first place, a directed graphical model is less complicated than a

general distribution for the same set of variables, and thus potentially requires
less data to accurately characterize. As a simple toy example, consider a jointly
discrete distribution for (X,Y, Z,W ) taking values in a simple set {1, 2, 3}4. A
general joint distribution for (X,Y, Z,W ) requires the specification of 34−1 = 80
probabilities (the 81st coming from the fact that values pX,Y,Z,W (x, y, z, w)must
sum to 1). On the other hand, if P is represented by the graph G in Figure 45,
then form (194) holds and only 2 values are needed to specify pX (x), 2 values
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are needed to specify pZ (z) , 2 values are needed to specify each of 9 different
conditional pmfs pY |X,Z (y|x, z), and finally 2 values are needed to specify each
of 3 conditional pmfs pW |Y (w|y). That is, there are 2 + 2 + 2 (9) + 2 (3) = 28
probabilities to be specified under form (194), far fewer than in general.
None of this touches the obvious questions of what forms of DAG are ap-

propriate (and why they are so) in particular applications and lead to effective
methods of translating a training set into appropriate estimates for the factors
p (xi|parentsi) in the expression (193). The question of how to infer the fac-
tors of the product form from training data is particularly perplexing for models
that include latent/hidden/unobserved nodes. Researchers who value this kind
of modeling must obviously produce tractable and believable DAGs and cor-
responding forms for conditional distributions that lead to effective specialized
fitting methods for the kinds of training data they expect to encounter.

18.2 Some Considerations for Undirected Graphical Mod-
els

An undirected graph (that might potentially represent some aspects of the
joint distribution of X = (X1, X2, . . . , Xk)) consists of nodes (or vertices )
X1, X2, . . . , Xk and edges connecting some of them. A corresponding proba-
bility model for X is variously known as an undirected graphical model, a
Markov random field, and a Markov network.
Some of the terminology introduced for directed graphs carries over to undi-

rected graphs. And there are also some important additional concepts. For a
graph with nodes/vertices X,Y, Z, . . .

1. two vertices X and Y are said to be adjacent if there is an edge between
them, here symbolized as X ∼ Y ,

2. a sequence of vertices {X1, X2, . . . , Xn} is a path if Xi ∼ Xi+1 for each i,

3. if A,B, and C are disjoint sets of vertices, C separates A and B provided
every path from a vertex X ∈ A to a vertex Y ∈ B contains an element
of C,

4. a clique is a set of vertices of a graph that are all adjacent to each other,
and

5. a clique is maximal if it is not possible to add another vertex to it and
still have a clique.

Item 3. could be equivalently stated as "C separates A and B provided upon
removing the vertices in C from the graph there is no path from a vertex in A
to vertex in B."

The simple example below can be used to illustrate some of this terminology.
In Figure 46 {X1, X3} and {X4} are separated by {X2}, {X3} and {X4} are
separated by {X2}, {X1, X2} is a clique, and {X1, X2, X3} is a maximal clique.
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Figure 46: An undirected graph.

For a vector of random quantities (and vertices) X = (X1, X2, . . . , Xk) for
each i and j let X̌ij stand for all elements of {X1, X2, . . . , Xk} except elements
i and j. For P the distribution of X, we may associate with P a pairwise
Markov graph G by

failing to connect Xi and Xj with an edge if and only if Xi ‖Xj | X̌ij

A pairwise Markov graph for P can be made by considering only
(
k
2

)
pairwise

conditional independence questions. But as it turns out, many other conditional
independence relationships can be read from it. That is, it turns out that if
G is a pairwise Markov graph for P , then for non-overlapping sets of vertices
A,B, and C and corresponding subvectors of X respectively XA,XB , and XC

C separates A and B ⇒XA ‖XB |XC (196)

If, for example, Figure 47 is a pairwise Markov graph for a distribution P
for X1, X2, . . . , X5, we may conclude from implication (196) that

(X1, X2, X5) ‖ (X3, X4) and X2 ‖X5 |X1

Figure 47: A pairwise Markov undirected graph for P .

Condition (196) says that graph separation implies conditional indepen-
dence. An apparently stronger relationship would be the equivalence of the
graphical and probabilistic conditions. For P a joint distribution forX1, X2, . . . , Xk

and G an undirected graph, we will say that P is globally G Markov provided
for all non-overlapping sets of vertices A,B, and C

C separates A and B ⇔XA ‖XB |XC

Then as it turns out,

P is globally G Markov⇔ G is a pairwise Markov graph associated with P
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so that separation on a pairwise Markov graph is equivalent to conditional in-
dependence.
An important question is "What forms are possible for densities when P

is globally G Markov?" An answer is provided by the famous Hammersley-
Clifford Theorem. This promises that if joint pmf pX (x) > 0 for all x and
{C1, C2, . . . , Cm} is the set of all maximal cliques for a pairwise Markov graph
G associated with P , then

pX (x) ∝
m∏
i=1

ψi (xCi) (197)

for some functions ψi (·) > 0. A potentially more natural but less parsimonious
representation is that (if again joint pmf pX (x) > 0 for all x)

pX (x) ∝
∏

i<i s.t. Xi∼Xj

ψij (xi, xj) (198)

for some functions ψij (·) > 0.
As for the directed case, the independence relationships implied by an asso-

ciated Markov (undirected) graph enforce simplicity on a joint distribution P .
Take, for example, the situation represented by Figure 46, supposing X takes
values in the small set {1, 2, 3}4. In general, a pmf pX (x) for this sample space
is specified by 34− 1 = 80 probabilities. But the set of maximal cliques for the
undirected graph in Figure 46 is {{X1, X2, X3} , {X2, X4}} so that form (197)
promises that no more than 33 + 32 = 36 values are needed to specify P that is
globally or pairwise G Markov for the undirected graph in Figure 46. Or, since
there are 4 edges on the graph in Figure 46, form (198) promises that no more
than 4 · 32 = 36 values are needed to specify P .

The same issues raised regarding the practical use of directed graphical mod-
els arise for undirected graphical models. What forms are appropriate for what
kinds of problems? How does one infer the nature of the ψ (·) appearing in form
(197) or (198) from training data, especially when some of the variables involved
are latent/hidden/unobserved? Again, researchers who value this kind of mod-
eling must obviously produce tractable and believable/well-motivated forms G
and corresponding forms for the ψ (·) that lead to effective specialized fitting
methods for the kinds of training data they expect to encounter.

18.2.1 Restricted Boltzmann Machines

One particular version of undirected graphical modeling that has seen recent
interest in machine learning applications is that of Restricted Boltzmann Ma-
chines. We will here consider the simplest of these models, where all variables
are binary.49 In this kind of model, nodes are arranged in two layers and

49For some purposes 0/1 coding is most convenient and for others −1/1 coding of variables
is most helpful. What follows can be read with either in mind. The class of models produced
does not depend on this choice, only the interpretation of parameters of those models.
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there are edges only between nodes on different layers, not between nodes in
the same layer. One layer of nodes is called the "hidden layer" and the other
is called the "visible layer." Typically the nodes in the visible layer correspond
to (digital versions) of variables that are (at least at some cost) empirically
observable, while the variables corresponding to hidden nodes are completely
latent/unobservable and somehow represent some stochastic physical or mental
mechanism. In addition, it is convenient in some contexts to think of visible
nodes as being of two types, say belonging to a set V1 or a set V2. For example,
in a prediction context, the nodes in V1 might encode "x"/inputs and the nodes
in V2 might encode y/outputs. We’ll use the naming conventions indicated in
Figure 48.

Figure 48: An undirected graph corresponding to a restricted Boltzmann ma-
chine with l + m + n total nodes. l nodes are hidden and the m + n visible
nodes break into the two sets V1 and V2.

Then for l+m+n real parameters θk and l (m+ n) real parameters θij (for
1 ≤ i ≤ l and l + 1 ≤ j ≤ l +m+ n) the functions

ψij (hi, vj |θ) = exp

((
θi

m+ n

)
hi +

(
θj
l

)
vj + θijhivj

)
can be used in form (198) to produce a pmf for (h,v) for which Figure 48
provides a pairwise Markov graph. For this form

p (h,v|θ) ∝ exp

 l∑
i=1

θihi +

l+m+n∑
j=l+1

θjvj +

l∑
i=1

l+m+n∑
j=l+1

θijhivj


and thus

p (h,v|θ) =
exp

(∑l
i=1 θihi +

∑l+m+n
j=l+1 θjvj +

∑l
i=1

∑l+m+n
j=l+1 θijhivj

)
∑

(h̃,ṽ) exp
(∑l

i=1 θih̃i +
∑l+m+n
j=l+1 θj ṽj +

∑l
i=1

∑l+m+n
j=l+1 θij h̃iṽj

)
(199)

236



Let the normalizing constant that is the denominator on the right of display
(199) be called γ (θ) and note the obvious fact that for these models

ln (p (h,v|θ)) =

l∑
i=1

θihi +

l+m+n∑
j=l+1

θjvj +

l∑
i=1

l+m+n∑
j=l+1

θijhivj − ln (γ (θ)) (200)

Observe that such a model can have as many as

l +m+ n+ l (n+m) = l + (l + 1) (n+m)

non-zero real parameters.
Because for typical applications 2l+n+m can be very large (and thus compu-

tation of γ (θ) can be prohibitive) it is not common to simulate (h,v) directly.
But since differences in the log probabilities in display (200) for the two possible
values of an hi or vj are very simple, conditional probabilities for a single hi
or vj are very easy to find, Gibbs sampling algorithms can be used to gener-
ate observations (h,v) from the pmf (199) for fixed θ. Similarly, it is easy to
hold fixed part of (h,v) (for example corresponding to nodes in V1) and simulate
from conditional distributions via Gibbs sampling (for fixed θ), thereby enabling
approximately optimal prediction of the rest of (h,v) (and, in particular, the
nodes corresponding to V2).
This all looks attractive/promising, but there are three fundamental diffi -

culties related to these models, namely

1. the matter of fitting a vector of coeffi cients θ is problematic,

2. the fact that many (?"most"?) Boltzmann machines are nearly degenerate,
concentrating their probability on relative few different vectors and

3. (related to 2.) many (?"most"?) Boltzmann machines further have the
unpleasant property that change of a value of a single entry of (h,v) can
cause wide swings in the probability (199).

The first of these issues is well-recognized. The second and third seem far less
well-appreciated and make these models often less than ideal for representing
observed real variation in v.

What will be available as training data for an RBM is some set of (poten-
tially incomplete) vectors of values for visible nodes, say v∗i for i = 1, . . . , N
(that one will typically assume are independent and from some appropriate
marginal distribution for visible vectors derived via summation from the over-
all joint distribution of values associated with all nodes visible and hidden).
Notice now that even in a hypothetical case where one has "data" consisting
of complete (h,v) pairs, the existence of the unpleasant normalizing constant

γ (θ) would typically make optimization of a likelihood
N∏
i=1

p (hi,vi|θ) or log-

likelihood
∑N
i=1 ln p (hi,vi|θ) problematic. But the fact that one must sum out

over (at least) all hidden nodes in order to get contributions to a likelihood or
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loglikelihood makes the problem even more computationally diffi cult. That is,
if an ith training case provides a complete visible vector vi, the corresponding
likelihood term is the θ marginal of that visible configuration

p (vi|θ) =
∑
h̃

p
(
h̃,vi|θ

)
And the computational situation becomes even more unpleasant if an ith train-
ing case provides, for example, only values for variables corresponding to nodes
in V1 (say v1i), since the corresponding likelihood term is the marginal of only
that visible configuration

p (v1i|θ) =
∑

h̃ and ṽ2

p
(
h̃, (v1i, ṽ2) |θ

)
Substantial effort in computer science circles has gone into the search for

"learning" algorithms aimed at finding parameter vectors θ that produce large
values of loglikelihoods based on N training cases (each term based on some
marginal of p (h,v|θ) corresponding to a set of visible nodes). These seem
to be mostly based on approximate stochastic gradient descent ideas and ap-
proximations to appropriate expectations based on short Gibbs sampling runs.
Hinton’s notion of "contrastive divergence" appears to be central to the most
well known of these. Work of Kaplan et al. calls into question even the possi-
bility of completely rational means of fitting Boltzmann machines by appeal to
any standard statistical principles.
Beyond the fitting problem is the nature of many fitted Boltzmann Machines.

These seem to typically seriously under-represent the kind of variability seen in
vis in training sets and have marginals p (v|θ) that are highly sensitive to small
(one-coordinate) changes in v. For some theory in this direction, see again
work of Kaplan et al. These issues seem to be real drawbacks to the use of
RBMs in data modeling.
Some of what is termed "deep learning" seems to be based on the notion of

generalizing RBMs to more than a single hidden layer and potentially employs
visible layers on both the top and the bottom of an undirected graph. A cartoon
of a deep learning network is given in Figure 49. The fundamental feature of the
graph architecture here is that there are edges only between nodes in successive
layers.
If the problem of how to fit parameters for a RBM is a practically diffi -

cult/?impossible? one, fitting a deep network model (based on some training
cases consisting of values for variables associated with some of the visible nodes)
is clearly going to be doubly problematic. What seems to be currently popular
is some kind of "greedy"/"forward" sequential fitting of one set of parameters
connecting two successive layers at a time, followed by generation of simulated
values for variables corresponding to nodes in the "newest" layer and treating
those as "data" for fitting a next set of parameters connecting two layers (and so
on). But a deep learning network like that portrayed on Figure 49 compounds
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Figure 49: An hypothetical "deep" generalization of a RBM.

the kinds of fitting issues raised for RBMs and principled methods seem lacking.
Further, degeneracy and instability issues like 2. and 3. above also are manifest.
If the fitting issues for a deep network were solvable for a given architecture

and form of training data, some interesting possibilities for using a good "deep"
model have been raised. For one, in a classification/prediction context, one
might treat the bottom visible layer as associated with an input vector x, and the
top layer as also visible and associated with an output y or y. In theory, training
cases could consist of complete (x, y) pairs, but they could also involve some
incomplete cases, where y is missing, or part of x is missing, or ... so on. (Once
the training issue is handled, simulation of the top layer variables from inputs
of interest used as bottom layer values again enables classification/prediction.)
As an interesting second possibility for using deep structures, one could con-

sider architectures where the top and bottom layers are both visible and encode
essentially (or even exactly50) the same information and between them are sev-
eral hidden layers with one having very few nodes (like, say, two nodes). If one
can fit such a thing to training cases consisting of sets of values corresponding
to visible nodes, one can simulate (again via Gibbs sampling) for a fixed set
of "visible values" corresponding values at the few nodes serving as the narrow
layer of the network. The vector of estimated marginal probabilities of a latent
value 1 at those nodes might then in turn serve as a kind of pair of "generalized
principal component" values for the set of input visible values. (Notice that in

50 I am not altogether sure what are the practical implcations of essentially turning the kind
of "tower" in Figure 49 into a "band" or flat bracelet that connects back on itself, the top
hidden layer having edges directly to the bottom visible layer, but I see no obvious prohibition
of this architecture.
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theory these are possible to compute even for incomplete sets of visible values.)

19 Special Bayes Methods for Statistical Learn-
ing

19.1 Relevance Vector Machines

It is a theme that runs through much of modern prediction practice that shrink-
age and smoothing and control of complexity of predictors is an essential part of
finding effective versions of them. This is often accomplished by shrinking fitted
parameter vectors of models toward regions of a parameter space corresponding
to relatively simple sub-models.51 Some versions of partially Bayes prediction
methodology meant to enforce such parameter induced simplicity/sparsity seem
to go under the name "relevance vector machines." (Presumably this is about
identifying a few "relevant" parameters of a model that should not be "zeroed
out.") Here we consider some ideas in this direction for parameter vectors β
that provide coeffi cients for linear forms upon which SEL or 0-1 loss predictors
are to be built.
Suppose that for p predictors and N cases one creates from the p inputs

a feature matrix H
N×q

using q real-valued functions hj (x). This could be the

original data matrix X
N×p

in the case that q = p, a Gram matrix K
N×N

for a kernel

K (made with every hj (x) = K (x,xj)) in the case q = N , or simply a matrix
of values for some set of basis functions h1, . . . , hq (each mapping <p → <).
The idea is that a predictor of the output y is to be built on the product
(h1 (x) , . . . , hq (x))β for a q-vector of parameters β and that sparsity in the
parameter vector (few entries of any appreciable size) corresponds to simplicity
of the final predictor. The search for effective "relevance vector machines" is
the search for prior distributions for β that encode sparsity.52

Probably the simplest and most popular priors for this problem are so-called
spike and slab priors. These are priors for β that for a large number B,
a small positive constant α, and δ0 the point mass distribution at 0 make its
entries iid, with each βj having the distribution

αN
(
0, B2

)
+ (1− α) δ0 or αU (−B,B) + (1− α) δ0

This kind of prior distribution is obviously symmetric in j and puts much of its
prior probability on hyperplanes where some of the entries of β are 0. Cor-

51The support vector machine idea is an instance of this, where a relatively few "support
vectors" of N possible training vectors are represented in formulas for optimal linear voting
functions, because all others have coeffi cients that are "zeroed out" in the fitting process
(this ultimately corresponding putting parameter vectors on 0-coordinate hyperplanes in an
(N + 1)-dimensional parameter space).
52The fact that a posterior density is proportional to the product of the likelihood function

and a prior density implies that the way to get posterior sparsity is to use prior distributions
that put most of their mass on or near "simple sub-model" parts of the parameter space.
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responding posterior distributions based on a training set typically concentrate
on and near those hyperplanes.
The lasso development of Section 3.1.2 and the notion that penalization in

normal data models is strongly related to use of priors whose log densities are
proportional to the penalty functions suggests another possibility. That is the
use of priors for β that for a single λ > 0 and an a single exponent 0 < r ≤ 1
make its entries iid with each βj having density proportional to

exp (−λ |βj |r)

(The r = 1 case is that of independent doubly exponential priors for the entries
of β.) For large λ this symmetric prior again concentrates much of its mass near
hyperplanes where some of the entries of β are 0.
A third sparsity-inducing prior for β employs a set of q additional hyper-

parameters φ1, . . . , φq and conditional on these makes the entries of β independent
with βj ∼N

(
0, 1/φ2j

)
(the variance is 1/φ2j ). Then using independent proper

hyper-priors
φj ∼ Γ (a, b) for small positive a and b

or independent Jeffreys improper hyper-priors with

−1

2
lnφj ∼ U (<)

or proper approximations to the Jeffreys priors like

−1

2
lnφj ∼ U (−B,B) for large B

often posteriors for many of the φj have large mass far from 0 and correspond-
ingly encode large concentration of mass for many of the βj near 0.
The third possibility above has some corresponding analytical results that

can be used to approximate posteriors, but the most direct way of processing a
training set and prior distribution to produce usable posterior results is through
the use of standard Bayes MCMC software. In SEL prediction problems, one
can for example combine a prior distribution for β with a likelihood derived
from a model for independent

yi ∼ N
(
β0 + (h1 (xi) , . . . , hq (xi))β, σ

2
)

(and appropriate priors for β0 and σ2). In 2-class classification problems (with
0-1 coding) one can combine a prior distribution for β with a likelihood derived
from a model for independent

yi ∼ Bernoulli
(

1

1 + exp (− (β0 + (h1 (xi) , . . . , hq (xi))β))

)
(and an appropriate prior for β0). In both cases, standard Bayes software can
be used to identify a (typically sparse) high-posterior density parameter vector
β̂ and then a sensible SEL predictor

f̂ (x) = β̂0 + (h1 (x) , . . . , hq (x)) β̂
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in the first case and a sensible 0-1 loss classifier

f̂ (x) = I
[
β̂0 + (h1 (x) , . . . , hq (x)) β̂ > 0

]
in the second.

19.2 Dirichlet and Data-Derived Priors for Prediction Based
on Normal Mixture Models

A basic reality of high-dimensional (large p) prediction is that it is rare to
encounter a problem where a single simple relationship between input x and
output y holds across a large input space. What one might hope for, however, is
to find regions in <p where different simple relationships hold and to more or less
tie those relationships together (across the relevant part of <p) probabilistically.
Work of Lanker, Ryan, Culp, Vardeman, and Morris has been built on this idea
and (multivariate) normal mixture models. This section outlines some of that.
For (

y
x

)
∼ MVNp+1 (µ,Σ)

E[y|x] is a very simple linear function of x. So if a K-vector of (mixture)
probabilities π = (π1, π2, . . . , πK) (of course with

∑K
k=1 πk = 1) and K means

µk and covariance matrices Σk together specify a mixture distribution and(
y
x

)
∼

K∑
k=1

πkMVNp+1 (µk,Σk) (201)

then for p (x|µk,Σk) the kth (marginal) component density of x and Ek [y|x]
the kth (linear) conditional mean function, then

E [y|x] =

K∑
k=1

(
πkp (x|µk,Σk)∑K
k=1 πkp (x|µk,Σk)

)
Ek [y|x] (202)

where the multiplier of conditional mean k (call it πk (x)) is the conditional
probability that x is from the corresponding component of the mixture. Armed
with the mixture probabilities, means, and covariance matrices, formula (202)
provides a "locally" (where some πk (x) is essentially 1) simple (linear) SEL pre-
dictor for y. Of course, one doesn’t know parameter values needed to compute
the predictor except through a training set T .
It turns out that it often does not work well in practice to simply esti-

mate the parameters of the mixture distribution (201) from a training set and
plug those estimates into form (202) to make a SEL predictor for y. But
what Lanker et al. have found to be effective is based on a Bayes model and
use of latent "component identity" variables. That is, for a training set53

(x1, y1) , . . . , (xN , yN ) invent N corresponding latent variables k1, . . . , kN each

53Without loss of generality, suppose that every xj and y has been standardized.
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taking values in {1, 2, . . . ,K} iid with marginal distribution specified by π. If
conditioned on ki each (

yi
xi

)
∼ MVNp+1

(
µki ,Σki

)
the training set has N observations that are iid according to the mixture distri-
bution (201). Then for a prior distribution

π ∼ Dirichlet (α1, . . . , αK) (203)

(all αks the same works well in practice) and independent priors

µk
iid∼ g1 (·) and Σk

iid∼ g2 (·) (204)

MCMC algorithms for sampling from the posterior distribution of the parame-
ters of the mixture and the latent variables are easy to find. Iterates of the
parameters vectors from such an algorithm produce iterates of the functional
form (202) and averaging across iterates can produce a workable predictor. This
works by essentially picking out "the right" regions and linear functions where
linearity of prediction is warranted and by identifying "the right" number of
components (less than or equal to K) to assign appreciable entries in π. But it
seems that there are three requirements for the forms g1 (·) and g2 (·) in order
for this program to be effective. These are that 1) some kind of conjugacy is
needed in order to make Gibbs sampling applicable and the method practical, 2)
"locations" for g1 (·) need to be "right" and "scales" for g2 (·) need to be flexible,
and 3) neither "flat"/uninformative nor very "sharp"/informative distributions
work well for forms g1 (·) and g2 (·).

For purposes of making an effective predictor (not for purposes of a philo-
sophically "proper" Bayes analysis) it proves effective to employ g1 (·) derived
from the training set. One can effectively use a multivariate density estimate
based on the observed vectors in the training set and a spherical normal kernel

g1 (µ) =
1

N

N∑
i=1

p

(
µ|
(

yi
xi

)
, σ2I

)
for an appropriate bandwidth σ. (One can simulate from this prior by pick-
ing a training case at random and adding to it a MVNp+1

(
0, σ2I

)
random

perturbation.)
Further (still for purposes of making an effective predictor) it proves effective

to employ for g2 (·) an equally weighted mixture of inverse Wishart densities with
corresponding "means" γ2I and minimum (namely p+3) degrees of freedom for
γ ∈ {.01, .02, . . . , 1.00}. This mixture prior allows different scales for different
components of form (201) and gives a group of training cases i with common ki
maximum effect on what values of Σki have large posterior probability (tending
to make Σki look like the group sample covariance matrix).
The product of g1 (·) and g2 (·) is then a mixture of joint densities conjugate

in the one-sample multivariate normal problem and is thus easy to handle in
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Gibbs sampling. Gibbs updating of π is similarly easy using the kis, and
Gibbs updates of those are easily handled because they are discrete. In all,
the data-dependent "prior" distribution specified in displays (203) and (204) is
computationally attractive and leads to effective SEL prediction.

19.3 Bayes Mixture Analyses for Binary Vectors

The foregoing material on Dirichlet priors for multivariate normal mixtures has
an interesting parallel in a class of symmetric component models for (binary)
vectors x ∈ {0, 1}p. We here briefly discuss recent wok of Chakraborty and
Vardeman in this direction.
This begins from the exponential family of distributions on {0, 1}p defined

for parameters µ ∈ {0, 1}p and γ ∈ (0, 1) by the pmf

p (x|µ, γ) =

(
1− γ
1− γp

)
γ‖x−µ‖

2(
p

‖x− µ‖2
) (205)

The parameter µ is a "central value" for the distribution and ‖x− µ‖2 is sim-
ply the number of coordinates at which x and µ differ. The total probability
assigned (uniformly) to those x which differ from µ in m coordinates decreases
geometrically in m, and γ thus functions as a "spread" parameter for the dis-
tribution. (Small values of γ yield distributions highly concentrated at µ and
large γs have corresponding distributions approximately uniform on {0, 1}p.)
Since an arbitrary distribution for binary vectors x ∈ {0, 1}p is defined by 2p

probabilities, it is obviously possible to approximate any distribution for binary
vectors with a mixture of distributions with pmfs (205) to any desired degree
of precision. What is really more interesting is the possibility of describing
distributions for binary vectors in many applications as mixtures with relatively
few components, the µs representing modes or representative cases in the space
{0, 1}p and the corresponding γs controlling how many changes of coordinates
away from these modes are likely.
For local notational convenience, call a distribution on {0, 1}p of the form

(205) the SBEFp (µ, γ) distribution (for Symmetric Binary Exponential Family).
So a K-vector of (mixture) probabilities π = (π1, π2, . . . , πK) (of course with∑K
k=1 πk = 1) and K centers µk and spread parameters γk together specify a

mixture distribution
K∑
k=1

πkSBEFp (µk, γk) (206)

that is a potentially useful basis of modeling and inference.
As in the MVN case of the previous discussion, it proves helpful to invent

and use latent "component identity" variables. That is, for a training set
x1,x2, . . . ,xN , invent N corresponding variables k1, k2, . . . , kN each taking val-
ues in {1, 2, . . . ,K} iid with marginal distribution specified by π. If conditioned
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on ki each
xi ∼ SBEFp

(
µki , γki

)
the training set has N observations that are iid according to the mixture distri-
bution (206). Then for a prior distribution

π ∼ Dirichlet (α1, . . . , αK)

(all αks the same works well in practice) and independent priors

µk
iid∼ U ({0, 1}p) and γk

iid∼ g (·) (207)

where

g (γ) ∝

√
1− (p+ 1)

2
γp + 2p (p+ 2) γp+1 − (p+ 1)

2
γp+2 + γ2p+2

γ (1− γp+1)2 (1− γ)
2

(this latter is a univariate Jeffreys prior for γ in a model where µ is known
to be 0) MCMC algorithms for sampling from the posterior distribution of the
parameters of the mixture and the latent variables are easy to find. Iterates
of the parameters vectors from such an algorithm produce a number of useful
quantities. µs that appear with highest frequency in the iterates are candidates
for modes/representative cases of binary vectors. The average across iterates
of the probability assigned by the mixture to a value x serves as a posterior
mean for the probability of that value. And for any two indices i and i′, the
relative frequency among iterates with which ki = ki′ serves as an approximate
posterior probability that case i and case i′ share a common origin and can be
used as bases for clustering cases, much as was suggested for Zhou’s Bayesian
SOM and Chakraborty’s Bayes biclustering.

Part VII

Appendices
A Exercises

A.1 Section 1.2 Exercises

These are exercises intended to provide intuition that data in <p are necessarily
"sparse." The realities are that <p is "huge" and for p at all large, "filling up"
even a small part of it with data points is effectively impossible and our intuition
about distributions in <p is very poor.

1. (6HW-11) Let Qp (t) and qp (t) be respectively the χ2p cdf and pdf. Con-
sider the MVNp (0,I) distribution and Z1,Z2, . . . ,ZN iid with this distribution.
With

M = min {‖Zi‖ |i = 1, 2, . . . , N}
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write out a one-dimensional integral involving Qp (t) and qp (t) giving EM .
Evaluate this mean for N = 100 and p = 1, 5, 10, and 20 either numerically
or using simulation.

2. (6HW-13) For each of p = 1, 5, 10, and 20, generate at least 1000 realizations
of pairs of points x and z as iid uniform over the p-dimensional unit ball (the set
of x with ‖x‖ 6 1). Compute (for each p) the sample average distance between
x and z. (For Z ∼MVNp (0,I) independent of U ∼U(0, 1) , x =

(
U1/p/ ‖Z‖

)
Z

is uniformly distributed in the unit ball in <p.)

3. (5HW-14) For each of p = 10, 20, 50, 100, 500, and 1000, make n = 10, 000
draws of distances between pairs of independent points uniform in the cube
[0, 1]

p. Use these to make 95% confidence limits for the ratio

mean distance between two random points in the cube

maximum distance between two points in the cube

4. (5HW-14) For each of p = 10, 20, 50, make n = 10, 000 random draws of
N = 100 independent points uniform in the cube [0, 1]

p. Find for each sample
of 100 points, the distance from the first point drawn to the 5th closest point of
the other 99. Use these to make 95% confidence limits for the ratio

mean diameter of a 5-nearest neighbor neighborhood if N = 100

maximum distance between two points in the cube

5. (5HW-14)What fraction of random draws uniform from the unit cube [0, 1]
p

lie in the "middle part" of the cube [ε, 1− ε]p, for a small positive number ε?

The next 3 problems are based on nice ideas taken from Giraud’s
book.

6. (6HW-15) For p = 2, 10, 100, and 1000, draw samples of size N = 100 from
the uniform distribution on [0, 1]

p. Then for every (xi,xj) pair with i < j in
one of these samples, compute the Euclidean distance between the two points,

‖xi−xj‖. Make a histogram (one p at a time) of these
(

100
2

)
distances.

What do these suggest about how well "local" prediction methods (that rely
only on data points (xi, yi) with xi "near" x to make predictions about y at x)
can be expected to work?

7. (6HW-15) Consider finding a lower bound on the number of points xi (for
i = 1, 2, . . . , N) required to "fill up" [0, 1]

p in the sense that no point of [0, 1]
p

is Euclidean distance more than ε away from some xi.
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The p-dimensional volume of a ball of radius r in <p is

Vp (r) =
πp/2

Γ (p/2 + 1)
rp

and Giraud notes that it can be shown that as p→∞

Vp (r)(
2πer2

p

)p/2
(pπ)

−1/2
→ 1

Then, if N points can be found with corresponding ε-balls covering the unit
cube in <p, the total volume of those balls must be at least 1. That is

NVp (ε) > 1

What then are approximate lower bounds on the number of points required to
fill up [0, 1]

p to within ε for p = 20, 50, and 200, and ε = 1, .1, and .01? (Giraud
notes that the p = 200 and ε = 1 lower bound is larger than the estimated
number of particles in the universe.)

8. (6HW-15) Giraud points out that for large p, most of MVNp (0,I) proba-
bility is "in the tails." For qp (x) the MVNp (0,I) pdf and 0 < δ < 1 let

Bp (δ) = {x|qp (x) > δqp (0)} =
{
x| ‖x‖2 6 2 ln

(
δ−1
)}

be the "central"/"large density" part of the multivariate standard normal dis-
tribution.
a) Using the Markov inequality, show that the probability assigned by the

multivariate standard normal distribution to the region Bp (δ) is no more than
1/δ2p/2.
b) What then is a lower bound on the radius of a ball at the origin (call

it r (p)) required so that the multivariate standard normal distribution places
probability .5 in that ball? What is an upper bound on the ratio qp (x) /qp (0)
outside the ball with radius that lower bound? Plot these bounds as functions
of p for p ∈ [1, 500].

A.2 Section 1.3 Exercises

1. (6HW-17)
a) Argue carefully that for inherently non-negative response y with loss

L (ŷ, y) =

[
ln

(
ŷ + 1

y + 1

)]2
a theoretically optimal predictor is

f (x) = exp (E[ln (y + 1) |x])− 1
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b) The Zillow Kaggle game for predicting (positive) house prices used the
loss function

L (ŷ, y) = (ln ŷ − ln y)
2

=

(
ln
ŷ

y

)2
Identify the function of x, call it f (x), that based on a joint distribution P for
(x, y) optimizes

EL (g (x) , y)

over choices of function g (x).

2. (6HW-13) Consider the loss function L (ŷ, y) = (1− yŷ)+ for y taking
values in {−1, 1} and prediction ŷ in <. Suppose that P [y = 1] = p. Write
out the expected (over the randomness in y) loss of prediction ŷ. Plot this
as a function of ŷ for the cases where first p < .5 and then p > .5. (These
are continuous functions that are linear on the intervals (−∞,−1) , (−1, 1) ,and
(1,∞).) What is an optimal choice of ŷ (depending upon p)?

3. (5E1-18) Consider predictors of y ∈ < for x ∈ [0, 1] based on linear combi-
nations of the small set of "features" (functions of x)

h1 (x) = I

[
0 6 x 6 1

3

]
, h2 (x) = I

[
1

3
< x 6 2

3

]
, and h3 (x) = I

[
2

3
< x 6 1

]
and the very small training set

Case (i) 1 2 3 4 5 6
yi 0 4 10 12 6 10
xi .1 .3 .4 .6 .7 .9

a)Without bothering to center y, consider using OLS to fit a predictor for y
of the form f̂ (x) = b1h1 (x) + b2h2 (x) + b3h3 (x) to the training set. Evaluate
the LOOCV RMSPE for this kind of predictor.
b) Center the response (leaving the input as is) and fit a predictor (for

centered response) of the form f̂ (x) = b1h1 (x)+b2h2 (x)+b3h3 (x) via penalized
least squares with penalty λ

(
b21 + b22 + b23

)
for λ > 0. (Give formulas for the 3

coeffi cients.)

4. (5E1-18) Use the same training set as in Problem 3 above and without
bothering to center y, find the 1-nn SEL predictor for y, say f̂1-nn (x), and
evaluate its LOOCV MSPE. (Specify values of the predictor for all x ∈ [0, 1]
except where there are "ties."

5. (5HW-18) Consider the Ames House Price dataset and possible predic-
tors of Price. In particular, consider the p = 4 inputs Size, Fireplace, Base-
mentbath, and Land. There are, of course, 24 = 16 possible multiple linear
regression predictors to be built from these features (including the one with no
covariates employed). Use both LOOCV and repeated 8-fold cross-validation
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implemented through caret train() to compare these 16 predictors in terms
of cross-validation root mean squared prediction errors.

6. (5HW-18) Consider the famous "Glass Identification" dataset of German
on the UCI Machine Learning Data Repository and k-nn classification between
glass Types 1 and 2.
a) Use both LOOCV and repeated 10-fold cross-validation to find what you

believe to be a best number of neighbors for this prediction task.
b) For your choice of k =number of neighbors in a), the variable t (x) =number

of Type 2 cases in the k-nearest neighborhood of x can take values 0, 1, 2, . . . , k.
The nearest neighbor classifier classifies to Type 2 if t (x) > k/2. This is based
on N = 146 training cases of which 70 are of glass Type 1 and 76 are of glass
Type 2. Suppose that you want to use π1 = .7 and π2 = .3 and 0-1 loss. How,
if at all, would you modify the ordinary k-nn classifier?

7. (5HW-14) Consider 4 different continuous distributions on the 2-dimensional
unit square (0, 1)

2 with densities on that space

p ((x1, x2) |1) = 1, p ((x1, x2) |2) = x1 + x2, p ((x1, x2) |3) = 2x1,

and p ((x1, x2) |4) = x1 − x2 + 1

For a 0-1 loss K = 4 classification problem, find explicitly and make a plot
showing the 4 regions in the unit square where an optimal classifier f has f (x) =
k (for k = 1, 2, 3, 4) first if π = (π1, π2, π3, π4) is (.25, .25, .25, .25) and then if it
is (.2, .2, .3, .3).

8. (5E1-14) Suppose that (unbeknownst to a statistical learner) x ∼U(0, 1)
and E[y|x] = I [.45 < x < .55] (that is, the conditional mean of y given x is 1

when .45 < x < .55 and is 0 otherwise). A 3-nearest-neighbor predictor, f̂N ,
is based on N data pairs, and f̂N (.5) has conditional means given the values of
the inputs in the training set:

0 if no xi is in (.45, .55)
1/3 if one xi is in (.45, .55)
2/3 if two xis are in (.45, .55)
1 if three or more xis are in (.45, .55)

What is the value of the bias of the nearest neighbor predictor at .5? Does this
bias go to 0 as N gets big? Argue carefully one way or the other.

9. (6E1-19) Below is a representation of an N = 6 toy 2-class classification
training set with p = 2. Find the 0-1 loss LOOCV error rate for the 3-nearest-
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neighbor classifier based on these training cases.

10. (6HW-11) Consider SEL prediction. Suppose that in a very simple prob-

lem with p = 1, the distribution P for the random pair (x, y) is specified by

x ∼ U (0, 1) and y|x ∼ N
(
x2, (1 + x)

)
((1 + x) is the conditional variance of the output). Further, consider two possi-
ble sets of functions S = {g} for use in creating predictors of y, namely

1. S1 = {g|g (x) = a+ bx for real numbers a, b} , and

2. S2 =

{
g|g (x) =

10∑
j=1

ajI
[
j−1
10 < x 6 j

10

]
for real numbers aj

}
Training data are N pairs (xi, yi) iid P . Suppose that the fitting of elements

of these sets is done by

1. OLS (simple linear regression) in the case of S1, and

2. according to

âj =


ȳ if no xi ∈

(
j−1
10 ,

j
10

]
1

#xi∈( j−110 ,
j
10 ]

∑
i with

xi∈( j−110 ,
j
10 ]

yi otherwise

in the case of S2,

to produce predictors f̂1 and f̂2.
a) Find (analytically) the functions g∗ for the two cases. Use them to find

the two expected squared model biases Ex (E[y|x]− g∗ (x))
2. How do these two

compare?
b) For the second case, find an analytical form for ET f̂2 and then for the

average squared fitting bias Ex
(
ET f̂2 (x)− g∗2 (x)

)2
. (Hints: What is the con-

ditional distribution of the yi given that no xi ∈
(
j−1
10 ,

j
10

]
? What is the

conditional mean of y given that x ∈
(
j−1
10 ,

j
10

]
?)

250



c) For the first case, simulate at least 1000 training datasets of size N = 100

and do OLS on each one to get corresponding f̂1s. Average those to get an
approximation for ET f̂1. (If you can do this analytically, so much the better!)
Use this approximation and analytical calculation to find the average squared

fitting bias Ex
(
ET f̂1 (x)− g∗1 (x)

)2
for this case.

d) How do your answers for b) and c) compare for a training set of size
N = 100?
e) Use whatever combination of analytical calculation, numerical analysis,

and simulation you need to use (at every turn preferring analytics to numerics

to simulation) to find the expected prediction variances ExVarT
(
f̂ (x)

)
for the

two cases for training set size N = 100.
f) In sum, which of the two predictors here has the best value of Err for

N = 100?

11. (6HW-11) Two files with respectively N = 100 and then N = 1000 pairs
(xi, yi) generated according to P in Problem 10 above are provided with these
notes. Use 10-fold cross validation to see which of the two predictors in Problem
10 looks most likely to be effective. (The datasets will not be sorted, so you
may treat successively numbered groups of 1/10th of the training cases as your
K = 10 randomly created pieces of the training set.)

12. (5HW-14) Again consider SEL prediction. Suppose that (unknown to a
statistician) a mechanism generates iid data pairs (x, y) according to the follow-
ing model:

x ∼ U (−π, π)

y|x ∼ N
(

sin (x) , .25 (|x|+ 1)
2
)

(The conditional variance is .25 (|x|+ 1)
2.)

a) What is an absolutely minimum value of Err possible regardless what
training set size, N , is available and what fitting method is employed?
b) What linear function of x (which g (x) = a + bx ) has the smallest

"average squared bias" as a predictor for y? What cubic function of x (which
g (x) = a+ bx+ cx2 + dx3) has the smallest average squared bias as a predictor
for y? Is the set of cubic functions big enough to eliminate model bias in this
problem?

13. (5HW-14) An N = 100 dataset generated according to the model of
Problem 12 is provided with these notes. Use 10-fold cross validation (use the
1st ten points as the fold, the 2nd 10 points as the second, etc.) based on the
dataset to choose among the following methods of prediction for this scenario:

• polynomial regressions of orders 0, 1, 2, 3, 4, and 5,

• regressions using sets of predictors {1, sinx, cosx} and
{1, sinx, cosx, sin 2x, cos 2x}, and
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• a regression with the set of predictors{
1, x, x2, x3, x4, x5, sinx, cosx, sin 2x, cos 2x

}
(Use ordinary least squares fitting.) Which predictor looks best on an

empirical basis? Knowing how the data were generated (an unrealistic luxury)
which methods here are without model bias?

14. (5E1-14) Consider a joint pdf (for (x, y) ∈ (0, 1)× (0,∞)) of the form

p (x, y) =
1

x2
exp

(
− y

x2

)
for 0 < x < 1 and 0 < y

(x ∼U(0, 1) and conditional on x, the variable y is exponential with mean x2.)
a) Find the linear function of x (say α+βx) that minimizes E(y − (α+ βx))

2.
(The averaging is over the joint distribution of (x, y). Find the optimizing in-
tercept and slope.)
b) Suppose that a training set consists of N data pairs (xi, yi) that are

independent draws from the distribution specified above, and that least squares
is used to fit a predictor f̂N (x) = aN + bNx to the training data. Suppose
that it’s possible to argue that the least squares coeffi cients aN and bN converge
(in a proper probabilistic sense) to your optimizers from a) as N →∞. Then
for large N , about what value of (SEL) training error do you expect to observe
under this scenario?

15. (5E1-16) Unknown to statistical learners in a p = 1 SEL prediction

problem, x ∼U(0, 6) and y|x ∼N
(
x− 3, (x+ 1)

2
)
(the conditional variance is

(x+ 1)
2). A statistical learner uses a class of predictors S consisting of all

functions of the form ga,b (x) = a · I [x < 2] + b · I [x > 2].
a) In this context, what are

• the minimum expected loss possible,

• the best element of S, and

• the learner’s modeling penalty?

b) Suppose that based on a training set of size N = N1 + N2 where N1
is the count of xi that are less than 2 and N2 is the count of xi that are at
least 2, the fitting procedure used is to take54 â = ȳ1 and b̂ = ȳ2 (with the
understanding that if N1 = 0 then â = 0 and if N2 = 0 then b̂ = 0). Write an
explicit expression for the fitting penalty here. (Hint: What is the distribution
of N1? Given that an xi is less than 2, what are the mean and variance of y?
Given that an xi is at least 2, what are the mean and variance of y?)
c) Suppose that a second statistical learner uses predictors hc,d (x) = c ·

I [x < 3]+d·I [x > 3]. A best such predictor is in fact h−1.5,1.5 (x) = − 32I [x < 3]+

54 In the obvious way, ȳ1 is the sample mean output for inputs xi < 2 and ȳ2 is the sample
mean output for inputs xi > 2.
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3
2I [x > 3]. Find a linear combination of the best element of S you identified
in a) and this best predictor available to the second learner that is better than
either individual predictor.

16. (6HW-13) Using the datasets provided with these notes carry out the
steps of Problems 10 and 11 above supposing that the distribution P for the
random pair (x, y) is specified by

x ∼ U (0, 1) and y|x ∼ Exp
(
x2
)

(the exponential mean is x2).

17. (6HW-15) Using the datasets provided with these notes carry out the
steps of Problems 10 and 11 above supposing that the distribution P for the
random pair (x, y) is specified by

x ∼ U (0, 1) and y|x ∼ N
(

(3x− 1.5)
2
, (3x− 1.5)

2
+ .2

)
(the Gaussian variance is (3x− 1.5)

2
+ .2).

18. (6E1-15) Consider a SEL prediction problem where p = 1 and the
class of functions used for prediction is (the set of constant functions) S =
{h|h (x) = c ∀x and some c ∈ <}. Suppose that in fact

x ∼ U (0, 1) , E [y|x] = ax+ b, and Var [y|x] = dx2 for some d > 0

a) Under this model, what is the best element of S, say g∗, for predicting
y? Use this to find the average squared model bias in this problem.
b) Suppose that based on an iid sample of N points (xi, yi), fitting is done

by least squares (and thus the predictor f̂ (x) = ȳ is employed). What is the
average squared fitting bias in this case?
c) What is the average prediction error, Err, when the predictor in b) is

employed?

19. (6HW-17) Consider a toy 2-class classification model for p = 1, where

x|y = 0 is N(0, 1), x|y = 1 is N
(

1, (.5)
2
)
(the standard deviation is .5), and

P [y = 0] = .5 = P [y = 1].
a) Compute and plot the function P [y = 1|x].
b) Identify the optimal 0-1 loss classifier and the best possible expected

loss/error rate in this classification problem. (This is a numerical problem.)
c) Consider the set of "linear" classifiers

S = {I [x < c] |c ∈ <} ∪ {I [x > c] |c ∈ <}

(that make one cut in the real numbers at c and classify one way to the left of
c and the other way to the right of c). Plot as functions of c the risks

E (I [y = 0] I [x < c] + I [y = 1] I [x > c])
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for classifiers of the form I [x < c] and

E (I [y = 0] I [x > c] + I [y = 1] I [x < c])

for classifiers of the form I [x > c]. What is the best element of S (say, g∗)
and then what is the "modeling penalty" associated with using the class of
predictors/classifiers S (the difference between the optimal error rate and the
error rate for g∗)?
d) Suppose that for a training set of size N = 100 (generated at random

from the distribution described in the preamble of this problem), one will choose
a cut point ĉ half way between two consecutive sorted xi values minimizing

min [# {yi = 0|xi < c}+ # {yi = 1|xi > c} ,# {yi = 1|xi < c}+ # {yi = 0|xi > c}]

Then, if

# {yi = 0|xi < ĉ}+ # {yi = 1|xi > ĉ} 6 # {yi = 1|xi < ĉ}+ # {yi = 0|xi > ĉ}

one will employ the classifier f̂ (x) = I [x < ĉ] and otherwise the classifier f̂ (x) =

I [x > ĉ]. Simulate 10, 000 training samples and find corresponding classifiers f̂ .
For each f̂ compute a (conditional on the training sample) error rate (an average
of two appropriate normal probabilities on half infinite intervals bounded by ĉ)
and average across the training samples. What is the "fitting penalty" for this
procedure? Redo this exercise, using a training set of size N = 50. Is the fitting
penalty larger than for N = 100?

20. (6HW-17) Consider the model of Problem 19 above, but change to the
"−1 and 1" coding of classes/values of y.
a) Plot the function g minimizing Eexp (−yg (x)) over all choices of real-

valued g.
Suppose then that one wishes to approximate this minimizer from part a) with
a function of the form β0+β1 (x− x̄)+β2 (x− x̄)

2 based on a training set. Your
instructor will provide a training set of size N = 100 based on the model of this
problem. Use it in what follows.
b) Use a numerical optimizing routine and identify values β̂0, β̂1, β̂2 mini-

mizing the empirical average loss

R (β0, β1, β2) =
1

N

N∑
i=1

exp
(
−yi

(
β0 + β1 (xi − x̄) + β2 (xi − x̄)

2
))

c) Now consider the penalized fitting problem where one chooses to optimize

Rλ (β0, β1, β2) =
1

N

N∑
i=1

exp
(
−yi

(
β0 + β1 (xi − x̄) + β2 (xi − x̄)

2
))

+ λβ22

For several different values of λ > 0, plot on the same set of axes, the optimizer
from a), the function β0+β1 (x− x̄)+β2 (x− x̄)

2 optimizing R (β0, β1, β2) from
b), and the functions optimizing Rλ (β0, β1, β2).
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21. (5E2-14) At a particular input vector of interest in a SEL prediction
problem, say x, the conditional mean of y|x is 3. Two different predictors,
f̂1 (x) and f̂2 (x) have biases (across random selection of training sets of fixed
size N) at this value of x that are respectively .1 and −.5. The random vector of
predictors at x (randomness coming from training set selection) has covariance
matrix

Cov
(
f̂1 (x)

f̂2 (x)

)
=

(
1 .25
.25 1

)
If one uses a linear combination of the two predictors

f̂ ensemble (x) = af̂1 (x) + bf̂2 (x)

there are optimal values of the constants a and b in terms of minimizing the
expected (across random selection of training sets) squared difference between
f̂ ensemble (x) and 3 (the conditional mean of y|x). Write out and optimize an
explicit function of a and b that (in theory) could be minimized in order to find
these optimal constants.

22. (5E1-18) Consider a p = 1 SEL prediction problem where

E [y|x] = x (1− x) ,Var [y|x] = x (1− x) , and x ∼ U (0, 1)

a) Find the expected loss of a theoretically optimal predictor of y, f opt (x).
b) Consider predictors of the form

fc (x) = c1I [0 6 x < .4] + c2I [.4 6 x < .6] + c3I [.6 6 x 6 1]

for real constants c1, c2,and c3. Find

E [y|0 6 x < .4] ,E [y|.4 6 x < .6] , and E [y|.6 6 x 6 1]

and argue that these give optimal values for the constants.
c) Give an explicit expression for the expected loss of the optimal predictor

of the form fc (x). Note that together with the first answer this could give the
modeling penalty here.
d) Give an explicit expression for the fitting penalty if based on a training

set of size N , the value cl is estimated by

ĉl = ȳlI [at least one xi is the interval corresponding to cl]

(where ȳl is the sample mean response for training cases with xi in the interval
corresponding to cl).

23. (5HW-18) Consider a SEL prediction problem where p = 1, and the class
of functions used for prediction is the set of linear functions

S = {h|h (x) = b0 + b1x ∀x and some b0, b1 ∈ <}
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Suppose that in fact

x ∼ U (0, 1) ,E [y|x] = x+ 2x2, and Var [y|x] = .25x2

a) Under this model, what is the best element of S, say g∗, for predicting
y? Use this to find the modeling penalty/average squared model bias in this
problem.
b) What is the smallest possible expected loss here (the mean squared pre-

diction error of the theoretically best predictor, f (x) = x+ 2x2)?

Now consider the situation where N = 50 and simple linear regression (OLS) is
used to choose an element of S based on a training set. Simulate a large number
of training sets (at least 1000 of them) of this size according to the model here
using normal conditional distributions for y|x. For each simulated training set,
find the simple linear regression slope and intercept and use these to estimate
the mean vector and covariance matrix for the fitted regression coeffi cients (for
this sample size and this model). Use the estimated mean and covariance as
follows.
c) Estimate the linear function of x that is the difference between your

answer to a) and the average linear function produced by SLR in this context.
Find the expected square of this difference according to the U(0, 1) distribution
of x. (This is an estimate of the expected squared fitting bias here.)
d) Using your estimated covariance matrix, approximate the function of x

that is the variance (across training sets) of the value on the least squares line
at x. Find the mean of this function according to the U(0, 1) distribution of x.
(This is an estimate of the expected prediction variance.)
e) In light of c) and d) what is the (estimated by simulation) fitting penalty

in this context? What then is an approximate value for Err?

24. (6HW-17) Consider the Ames house price dataset of Problem 5 above
and the famous Wisconsin breast cancer dataset on the UCI Machine Learning
Data Repository. The latter has 683 = 699 − 16 complete cases (16 cases are
incomplete) with p = 9 numerical characteristics of biopsied tumors, 239 of
which were malignant and 444 which were benign. Use the train() function in
the caret package in R and do the following.
a) Find a best k for k-nn SEL prediction of home selling price first using

repeated 8-fold cross-validation, and then LOO cross-validation. Be sure to use
standardized inputs (even for the 0-1 indicators) and to re-standardize for each
fold. Plot the cross-validation root mean squared prediction error as a function
of k. How does the training root mean squared prediction error for the best
k compare to the corresponding cross-validation root mean squared prediction
error?
b) Find a best k for k-nn classification between benign and malignant cases

based on 0-1 loss, first using repeated 10-fold cross-validation, and then LOO
cross-validation. Be sure to use standardized inputs and to re-standardize for
each fold. Plot the cross-validation classification error rate as a function of k.
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How does the training error rate for the best k compare to the corresponding
cross-validation error rate?

25. (5E2-14) Below are class-conditional pmfs for a discrete predictor variable
x in a K = 3 class 0-1 loss classification problem. Suppose that probabilities of
y = k for k = 1, 2, 3 are π1 = .4, π2 = .3, and π3 = .3. For each value of x give
the corresponding value of the optimal (Bayes) classifier f opt .

y\x 1 2 3 4 5 6
1 .2 .1 .2 .1 .1 .3
2 .1 .1 .3 .3 .1 .1
3 .2 .1 .2 .2 .2 .1

26. (5E2-14) A training set of size N = 3000 produces counts of (x, y) pairs
as in the table below. (Assume these represent a random sample of all cases.)
For each value of x give the corresponding value of an approximately optimal
0-1 loss (Bayes) classifier f̂ .

y\x 1 2 3 4 5 6
1 95 155 145 205 105 150
2 305 105 195 140 195 155
3 150 190 160 155 150 245

27. (5E1-20) In a p = 1 SEL prediction problem, suppose that (unknown to
a statistical learner) x ∼U(0, 1) and E[y|x] = x3.
a) Two sets of functions mapping (0, 1) → <, S1 = {c}c∈< and S2 =

{dx}d∈<, might be searched for a suitable function to predict target y based
on input x. Determine which set provides the smaller model bias.
b) Suppose that (again unknown to the statistical learner) Var[y|x] = x2

from which it follows that Ey = 1
4 and Vary = 139

336 . The statistical learner uses
S1 = {c}c∈< and the predictor f̂ (x) = ȳN (the sample mean output from N
training cases). What then is the value of the fitting penalty?

28. (5E1-20) Consider a p = 1 SEL prediction problem. Suppose that a
predictor of the form

f̂c (x) = c ·


N∑
i=1

xiyi

N∑
i=1

x2i

 · x
is to be used. (This is a multiple of the least squares slope estimate in a no-
intercept regression model based on the training set.) The multiplier, c > 0
remains to be chosen. Suppose that training data are as follows.
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x −3 −1 0 0 4
y −2 −1 0 1 2

a) Write out an explicit form for the leave-one-out-cross-validation-mean-
squared-prediction-error for f̂c (x) in this toy example. (This is a function of
the real variable c, say CV (c).)
b) The value of c minimizing CV (c) in a) turns out to be ĉ = .9784. Show

this. Why is CV (.9784) not a good indicator of the effectiveness of predic-
tion methodology that in general employs form f̂c with c chosen by optimizing
CV (c)? How would you produce a reliable predictor of the performance of f̂ĉ
in this problem? (Explain clearly and completely.)

29. (5E1-20) In a K = 3 class classification problem with p = 1, class condi-
tional pdfs for x on (0, 1) are

p (x|1) = I [0 < x < 1] , p (x|2) = 3x2I [0 < x < 1] ,

and p (x|3) = 3 (1− x)
2
I [0 < x < 1]

a) With class probabilities π1 = π2 = π3 = 1
3 and 0-1 loss, give an explicit

form of a theoretically optimal classifier f (x) and evaluate the minimum possible
overall error rate (the expected loss of your optimal classifier).
b) With class probabilities π1 = .25, π2 = .375, and π3 = .375 and 0-1

loss, give an explicit form of a theoretically optimal classifier f (x) and evaluate
the corresponding class-conditional error rates (conditional probabilities of a
misclassification for y = 1, y = 2, and y = 3).

30. Suppose that in a p = 1 context, one is to predict y under squared error
loss on the basis of a training set T = {(x1, y1) , (x2, y2) , . . . , (xN , yN )} , and for

ri =
yi
xi

and r̄ =
1

N

N∑
i=1

ri

under consideration are the two very simple predictors

f̂1 (x) = x and f̂2 (x) = r̄ · x

Under the usual setup where theN pairs in T are iid according to P independent
of (x, y) ∼ P , consider P defined by a marginal distribution x ∼U

(
1
2 ,

3
2

)
and

conditional distributions y|x ∼N
(
βx, σ2

)
.

a) Show that

Err1 = E
(
y − f̂1 (x)

)2
= σ2 +

13

12
(β − 1)

2

and that

Err2 = E
(
y − f̂2 (x)

)2
= σ2 +

13

9N
σ2
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so that the first predictor is preferable to the second provided (β − 1)
2
/4 <

σ2/3N i.e. provided (β − 1)
2
/σ2 < 4/3N (a fact that is of no practical use to

a statistical learner not in full possession of the model generating the training
set!).

Consider LOOCV-guided choice between the two simple predictors for this
problem. The LOOCVMSPE for f̂1 (x) is

CV1 =
1

N

N∑
i=1

(yi − xi)2 =
1

N

N∑
i=1

y2i − 2
1

N

N∑
i=1

yixi +
1

N

N∑
i=1

x2i

Then for r̄(i) = 1
N−1

N∑
j 6=i,j=1

rj , the LOOCVMSPE for f̂2 (x) is

CV2 =
1

N

N∑
i=1

(
yi − r̄(i)xi

)2
=

1

N

N∑
i=1

y2i − 2
1

N

N∑
i=1

r̄(i)yixi +
1

N

N∑
i=1

r̄2(i)x
2
i

So CV1 < CV2 when

2

N∑
i=1

r̄(i)yixi − 2

N∑
i=1

yixi <

N∑
i=1

r̄2(i)x
2
i −

N∑
i=1

x2i

that is, when

2

N∑
i=1

(
r̄(i) − 1

)
yixi <

N∑
i=1

(
r̄2(i) − 1

)
x2i

Thus, the pick-the(-cross-validation-)winner predictor here is

f̃ (x) = xI

[
2

N∑
i=1

(
r̄(i) − 1

)
yixi <

N∑
i=1

(
r̄2(i) − 1

)
x2i

]

+ r̄xI

[
2

N∑
i=1

(
r̄(i) − 1

)
yixi >

N∑
i=1

(
r̄2(i) − 1

)
x2i

]

The generalization/prediction error for this pick-the-winner predictor is

Errptw = E
(
y − f̃ (x)

)2
which is certainly NOT just min (Err1,Err2). Further, this prediction error
Errptw is NOT naively approximated by the cross-validation error of the winner

min (CV1, CV2)
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b) To demonstrate all this, generate 1000 simulated training sets of size
N = 27 and an additional observation pair (x, y) for each of these, using σ = 2
for values of β = 3

9 ,
5
9 ,

7
9 , . . . ,

15
9 . (This is 7 sets—one for each β considered—of

1000 training sets, each of size N = 27.) For each training set, find f̃ (x)

and
(
y − f̃ (x)

)2
and average the squared differences across the 1000 sets in

each group to produce a simulation-based estimate of Errptw for each value
of β. How do these averages compare to the values of min (Err1,Err2) for
these cases? For each value of β compare the distribution of 1000 random
values min (CV1, CV2) produced, to the approximate value of Errptw . Does
the random variable min (CV1, CV2) appear to be a good estimator of Errptw?
Does it appear to be biased, and if so, in what direction?
c) Should one wish to make an honest empirical assessment of the likely

performance of f̃ (x), what can be done using LOOCV is this. For each "fold"
consisting of case i use the "remainder" consisting of the other N − 1 cases
to compute a "remainder i version" of the pick-the-winner predictor, say f̃ (i).

That is, let r̄(i,j) = 1
N−2

N∑
l 6=i,l 6=j,l=1

ri and define

f̃ (i) (x) = xI

2

N∑
j 6=i,j=1

(
r̄(i,j) − 1

)
yjxj <

N∑
j 6=i,j=1

(
r̄2(i,j) − 1

)
x2j


+ r̄(i)xI

2

N∑
j 6=i,j=1

(
r̄(i,j) − 1

)
yjxj >

N∑
j 6=i,j=1

(
r̄2(i,j) − 1

)
x2j


and use f̃ (i) (xi) in predicting yi. The appropriate LOOCV error is then

CVptw = 1
N

N∑
i=1

(
yi − f̃ (i)

)2
.

For the case of β in part b) with the worst match between Errptw and the
distribution of the variablemin (CV1, CV2), find the 1000 values of CVptw . Does
the random variable CVptw seem to be a better estimator of Errptw than the
naive min (CV1, CV2)? Explain.

31. .Consider the case of random variables C (i) for i ∈ I (some index set)
and let C stand for the random vector/function with coordinates/entries C (i).
Define the random variable

i∗ = arg min
i∈I

C (i)

(a minimizer of the entries of C). (We’ll assume enough regularity here that
there are no issues in defining this variable or any of the probabilities or expec-
tations used here.)
Suppose that of interest is the (non-random) vector/function EC, its (non-

random) optimizer
iopt = arg min

i∈I
(EC (i))
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and its minimum/optimum value EC (iopt).
a) Why is it "obvious" that

EC (i∗) 6 EC
(
iopt
)

?

b) Argue carefully that unless with probability 1 the non-random value iopt

is a minimizer of the random vector/function C,

EC (i∗) < EC
(
iopt
)

c) Say what the line of thinking in this problem implies about cross-validation
and a "pick-the-winner" prediction strategy. (Does it address the fact that al-
most always in predictive analytics contests, when final results based on predic-
tion for new cases are revealed they are worse than what contestants expect for
a test error?)

A.3 Section 1.4 Exercises

1. (5HW-16) Consider a 0-1 loss K = 2 classification problem with p = 1,
π0 = π1 = 1

2 , and pdfs

p (x|0) = I [−.5 < x < .5] and p (x|1) = 12x2I [−.5 < x < .5]

a) What is the optimal classification rule in this problem?
b) If one were to do "feature engineering" here, adding some function of

x, say t (x), to make a vector of features (x, t (x)) for classification purposes
(hoping to eventually employ a good "linear classifier"

f̂ (x, t (x)) = I [a+ bx+ ct (x) > 0]

for appropriate constants a, b,and c), what (knowing the answer to a) ) would
be a good choice of t (x)? (Of course, one doesn’t know the answer to a) when
doing feature selection!)
c)What is the "minimum expected loss possible" part of Err in this problem?
d) Identify the best classification rule of the form gc (x) = I [x > c]. (This

is g∗ (x) for S = {gc}. This could be thought of as the 1-d version of a "best
linear classification rule" here ... where linear classification is not so smart.)
What is the "modeling penalty" part of Err in this situation?
e) Suggest a way that you might try to choose a classification rule gc based

on a very large training sample of size N . Notice that a large training set would
allow you to estimate cumulative conditional probabilities P [x 6 c|y] by relative
frequencies

# number of training cases with xi 6 c and yi = y

# number of training cases with yi = y
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2. (5E1-15) Consider two probability densities on the unit disk in <2 (i.e. on{
(x1, x2) | x21 + x22 6 1

}
),

p (x1, x2|1) =
1

π
and p (x1, x2|2) =

3

2π

√
1− (x21 + x22)

and a 2-class 0-1 loss classification problem with class probabilities π1 = π2 = .5.
a) Give a formula for a best-possible single feature T (x1, x2).
b) Give an explicit form for the theoretically optimal classifier in this prob-

lem.

3. (5E1-18) Consider a K = 3 classification model with p = 3 class-conditional
densities on [0, 1]

3

p (x1, x2, x3|1) = 2x1, p (x1, x2, x3|2) = 2x2, and p (x1, x2, x3|3) = 2x3

a) Identify two real-valued features T1 (x) and T2 (x) that together provide
complete summarizations of all information about the class label y ∈ {1, 2, 3}
provided by x = (x1, x2, x3).
b) For the case of π1 = π2 = π3 = 1

3 give the form of an optimal 0-1 loss
classifier in terms of the values t1 and t2 of T1 (x) and T2 (x).

c) For the case of π1 = .6, π2 = .4, and π3 = 0 where L (ŷ, 1) = 10I [ŷ 6= 1]
and otherwise L (ŷ, y) = I [ŷ 6= y], give the form of an optimal classifier in terms
of the value of x = (x1, x2, x3).

4. (6E2-15) One can consider the possibility of "kernelizing" nearest-neighbor
prediction. ("Kernelization" amounts to mapping x ∈ <p to K (x, ·) in the
abstract function space, A, and using inner products in that space—and corre-
sponding distances—based on the kernel.) Using the Gaussian kernel K (x, z) =

exp
(
‖x− z‖2

)
, what is the abstract-space distance betweenK (x, ·) andK (z, ·)?

Describe the set of training cases xi ∈ <p with K (xi, ·) in the k-nearest neigh-
borhood of K (x, ·) in the abstract space A.

5. (6E1-17) In Section 1.4.3 there is an assertion that for a finite set B, say
B = {b1, b2, . . . , bm}, for |A| the number of elements in A ⊂ B, one kernel
function on subsets of B is

K (A1, A2) = 2|A1∩A2|

(B could, for example, be a list of attributes that an item might or might not
possess.)
a) Prove that K is a kernel function using the "kernel mechanics" facts.

(Hint: You may find it useful to associate with each A ⊂ B an m-dimensional
vector of 0s and 1s, call it xA ∈ {0, 1}m, with xAl = 1 exactly when bl ∈ A.)
b) Let T (A) (·) = K (A, ·) = 2|A∩ ·| map subsets of B to real-valued functions

of subsets of B. In the abstract space A (of real-valued functions of subsets of
B) what is the distance between T (A) and T (B), ‖T (A)− T (B)‖A?
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For N training "vectors" (Ai, yi) (Ai ⊂ B and yi ∈ <) consider the cor-
responding N points in A × <, namely (T (Ai) , yi) for i = 1, . . . , N . Define
a k-neighborhood Nk (V ) of a point (function) V ∈ A to be a set of k points
(functions) T (Ai) with smallest ‖T (Ai)− V ‖A.
c) Carefully describe a SEL k-nn predictor of y, f (V ), mapping elements

V of A to real numbers ŷ in <. Then describe as completely as possible the
corresponding predictor f (T (A)) mapping A ⊂ B to ŷ ∈ <.
d) A more direct method of producing a kind of k-nn predictor of y is to

take account of the hint for part a) and for subsets A and C of B, to associate
m-vectors of 0s and 1s respectively xA and xC and define a distance between
sets A and C as the Euclidean distance between xA and xC . This typically
produces a different predictor than the one in part c). Argue this point by
considering distances from xA and xC and from xA and xD in <m and from
T (A) and T (C) and from T (A) and T (D) in the space A for cases with |A| =
10, |C| = 4, |D| = 5, |A ∩ C| = 2, and |A ∩D| = 3.

6. (6HW-13) For a γ > 0, consider the function K : <2 ×<2 → < defined by

K (x,z) = exp
(
−γ ‖x− z‖2

)
a) Use the facts about kernel functions in Section 1.4.3 to argue that K is a

kernel function. (Note that ‖x− z‖2 = 〈x,x〉+ 〈z, z〉 − 2 〈x, z〉.)
b) Argue that there is a ϕ : <2 → <∞ so that with (infinite-dimensional)

feature vector ϕ (x) the kernel function is a "regular <∞ inner product"

K (x,z) = 〈ϕ(x) ,ϕ(z)〉∞ =

∞∑
l=1

ϕl (x)ϕl (z)

(You will want to consider the Taylor series expansion of the exponential func-
tion about 0 and coordinate functions of ϕ that are multiples of all possible
products of the form xp1x

q
2 for non-negative integers p and q. It is not necessary

to find explicit forms for the multipliers, though that can probably be done.
You do need to argue carefully though, that such a representation is possible.)

7. (6E1-19) Consider a 3-class classification problem with input vector x ∈
[0, 1]

5. Suppose that class-conditional densities for x are of the forms

p (x|1) =
4

3
(x1x2 + x4) , p (x|2) =

4

3
(x3x4 + x5) , and p (x|3) = 4x4x5

(all on [0, 1]
5) and that class probabilities are π1 = π2 = π3 = 1

3 .
a) Give expressions for the smallest set of features possible for representing

x without loss of information in this model.
b) Evaluate the conditional probability that y = 1 given that x =

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

c) Give explicit prescriptions for conditions on x under which an optimal
classifier (say, f (x)) has f (x) = 1, under which f (x) = 2, and under which
f (x) = 3.
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8. (6E1-19) "Correlation functions" from time series and spatial modeling
(and analysis of "computer experiments") are a source of reproducing kernels
for use in machine learning. In a 1992 paper, Mitchell and Morris introduced
the useful correlation function

ρ (d) =

 1− 6d2 + 6 |d|3 if |d| < .5

2 (1− |d|)3 if .5 ≤ |d| ≤ 1
0 if |d| > 1

(Interestingly, ρ (d) is a natural cubic spline.55) Here we will use it to make the
reproducing kernel

K (x,z) ≡ ρ (‖x−z‖)

mapping <p ×<p → <. For sake of concreteness, take p = 2.
a) For the mapping from <2 to the abstract function space A defined by the

kernel T (x) (·) ≡ K (x, ·), find numerical values for

• ‖T (x)‖A
•
〈
T ((0, 0)) + 2T

((
1
2 ,

1
2

))
, 3T ((1, 1))

〉
A

• ‖T ((0, 0))− T ((0, .6))‖A

b) Consider the problem of (penalized SEL) prediction of y from x = (x1, x2)
based on N training cases. Suppose that one will "correct" ridge regression
by addition of an appropriate linear combination of the functions K (xi, ·) to
produce a final predictor. That is, for centered ys and standardized xs consider
a predictor of form

f (x) = α1x1 + α2x2 +

N∑
i=1

βiK(xi,x)

using for λ1 > 0 and λ2 > 0 a penalty

λ1
(
α21 + α22

)
+ λ2

∥∥∥∥∥
N∑
i=1

βiK(xi, ·)
∥∥∥∥∥
2

A

(that penalizes both the "size" of the linear part of the predictor and the "size"
of the kernel-based correction to it). Develop (for fixed λ1 and λ2 and training
set and using notation K for the Gram matrix) a quadratic function of the co-
effi cients α1, α2, β1, β2, . . . , βN that you would optimize to produce a predictor.

9. (6E2-15) A 3-class classification model has πk = P [y = k] = 1
3 for k =

1, 2, 3, and densities p (x|k) for the conditional distributions of x|y = k, k =
1, 2, 3. For some pair of features T1 (x) and T2 (x) show that:

55See Section 4.2 for the meaning of this language.
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a) Optimal classification for each of the 3 pairs of classes is linear classifica-
tion based on the features t1 and t2. (Define the features and show the linear
classification boundaries on axes like those below. Indicate the scales for the
features.)

b) The optimal 3-class classifier can be realized as a "OVO" (one-versus-
one) combination of the three 2-class classifiers. (Show the optimal classification
boundaries in terms of features t1 and t2 and indicate which regions correspond
to which classification decisions.)

10. (5HW-16) Return to the context of Problem 13 of Section A.2 and the
last/largest set of predictors. Center the y vector to produce (say)Y ∗, remove
the column of 1s from the X matrix (giving a 100× 9 matrix) and standardize
the columns of the resulting matrix, to produce (say) X∗.
a) If one somehow produces a coeffi cient vector β∗ for the centered and

standardized version of the problem, so that

ŷ∗ = β∗1x
∗
1 + β∗2x

∗
2 + · · ·+ β∗9x

∗
9

what is the corresponding predictor for y in terms of{
1, x, x2, x3, x4, x5, sinx, cosx, sin 2x, cos 2x

}
?

b) Do the transformations and fit the equation in a) by OLS. How do the
fitted coeffi cients and error sum of squares obtained here compare to what you
get simply doing OLS using the raw data (and a model including a constant
term)?
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11. (5HW-18) Consider a toy 3-class classification problem with conditional

distributions x|y that are N(0, 1) for y = 1, N
(

1, (.5)
2
)
(the standard deviation

is .5) for y = 2, and N(2, 1) for y = 3 and class probabilities that are π1 = π2 =
π3 = 1/3.
a) Plot the three functions

P [y = 1|x] , P [y = 2|x] , and P [y = 3|x]

b) The exposition identifies an optimal pair of "features" for this 3-class
problem. Plot those two features, say t1 (x) and t2 (x) on the same set of axes.
c) Show that the optimal 3-class 0-1 loss classifier for any set of class prob-

abilities π1, π2, and π3 can be written as a function of the features from b).

12. (5E1-20) 4. It is well-known that K (z, x) = (1 + xz)
2 mapping <2 → <

is a legitimate "kernel function."
a) Suppose that for the training data of Problem 28 in Section A.2, one

determines to fit a predictor for y of the form

f̂ (x) =

5∑
i=1

βiK(x, xi)

by penalized least squares, using a (λ) multiple of the abstract (reproducing-
kernel-function-space) squared norm of f̂ as the penalty. Write out in completely
explicit form the quantity to be minimized in order to do the fitting. (This is a
function of β1, β2, . . . , β5 and λ. You don’t need to do scalar or matrix algebraic
simplification, but your answer must evaluate to a number when values for the
βs and λ are plugged in.)
b) T (x) (·) = K (x, ·) is non-linear map < → A. Show that the span of

{T (x1) , . . . , T (x5)} in A is 3-dimensional. (What kinds of functions of a single
real variable are mapped onto by T?) In light of this fact and the nature of the
functions T (xi) (·) propose a different penalized least squares fitting problem
that has the same set of possible predictors as in a) but requires optimization
over only 3 coeffi cients α1, α2, α3 (for a given penalty weight "λ"). (You do not
need to try to match the objective in a) exactly. You need only to provide a
sensible penalized version of fitting over the same set of functions.)

13. (6E2-13) Below are 3 (of hypothetically many) text "documents" in a
corpus using the alphabet A = {a,b}. Consider preparing a data matrix for
text processing for such documents. In particular, for each of the documents
below, prepare a row of a data matrix consisting of all 1-gram frequencies,
all 2-gram frequencies, and a feature quantifying the discounted (use λ = .5)
appearances of the interesting string "aaaa" in the documents. (In computing
this latter feature, count only strings with exactly 4 as in them. Don’t, for
example, count strings with 5 a’s by ignoring one of the interior a’s.)
Document 1: a a b a b b a a a b b b b a a a b a b a
Document 2: a a a b b b a b a a
Document 3: b b b b a b a b b a
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A.4 Section 1.5 Exercises

1. (6E1-17) Consider the 2-class classification model with the coding y ∈
{−1, 1} and (for sake of concreteness) x ∈ <1. For g (x) a generic voting function
we’ll consider the classifier

f (x) = sign (g (x))

Another (besides those mentioned in the exposition) "function loss" sometimes
discussed is

h (v) = (v − 1)
2

a) Carefully derive the function gopt (x) optimizing Eh (yg (x)) over choices
of g.
b) To the extent possible, simplify a good upper bound on the 0-1 loss error

rate of a classifier f (x) made from your gopt (x) from part a).
c) Suppose that in pursuit of a good classifier, one wishes to optimize an

empirical version of Eh (yg (x)), based on a training set of size N , over the class
of functions of the form

g (x|β0, β1) = 2Φ (β0 + β1x)− 1

penalized by λβ21 for a λ > 0. (Φ is the standard normal cdf.) In as simple
a form as possible, give two equations to be solved simultaneously to do this
fitting.
d) Suppose that as a matter of fact the two class-conditional densities op-

erating are

p (x| − 1) = I [0 < x < 1] and p (x|1) = 6x (1− x) I [0 < x < 1]

and that ultimately what is desired is a good ordering function O (x), one that
produces a small value of the "AUC" criterion. Do you expect the methodology

of part c) to produce a function g
(
x|β̂0, β̂1

)
that would be a good choice of

O (x)? Explain carefully.

2. (6HW-17) Argue carefully that losses h1, h2, and h3 (negative Bernoulli
loglikelihood term, exponential, and hinge losses) have optimizers of

Eh (yg (x))

(functions gopt (x)) as indicated in the exposition.

3. (5HW-18) In a 2-class classification problem using coding {−1, 1} for the
classes, the fake data below constitute a very small/toy training set.

y −1 −1 1 1 1 −1 −1 1
x 1 2 3 4 5 6 7 8
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Consider the production of a "voting function" of the form

gb (x) =

8∑
i=1

bi exp
(
−c |x− xi|2

)
by choice of the 8 coeffi cients bi (for some choice of c > 0) under the "function
loss" h2 (u) = exp (−u). (In the parlance of machine learning, the component

functions exp
(
−c |x− xi|2

)
are data-dependent p = 1 "radial basis functions.")

In fact, consider "penalized" fitting.
a) One possible penalized fitting criterion is

1

8

8∑
i=1

exp (−yigb (xi)) + λ

8∑
i=1

b2i

for some λ > 0. For choices of c = .5 and c = 1 optimize this criterion for two
different values of λ > 0 and plot the four resulting voting functions on the same
set of axes. Choose (by trial and error) two values of λ that produce clearly
different optimizing functions. (optim in R or some other canned routine will
be adequate to do this 8-d optimization.)

b) The function K (x, z) = exp
(
−c |x− z|2

)
is a "kernel function" in the

sense of Section 1.4.3. That implies that the 8× 8 Gram matrix

K = (K(xi, xj))i=1,2,...,8
j=1,2,...,8

is non-negative definite. Thus, with b = (b1, b2, . . . , b8)
′, b′Kb > 0 and another

possible penalized fitting criterion replaces
8∑
i=1

b2i in part a) with b
′Kb. For the

same values of c and λ you used in part a) redo the optimization using this
second penalization criterion and plot the resulting voting functions. Notice, by
the way, that the penalty in a) is a c→∞ limit of this second penalty!
c) As indicated in Section 1.4.3, the mapping T (x) = K (x, ·) from <1 to

functions <1 → <1 picks out N = 8 functions that are essentially normal pdfs.
Linear combinations of these form a linear subspace of this function space.
Further, there is a valid inner product that can be defined on this subspace, for
which

〈T (x) , T (z)〉A = K (x, z)

Using this inner product,

• what is the inner product of two elements of this subspace, say gb∗ (x) and
gb∗∗ (x)?

• what is the distance between T (x) and T (z),

‖T (x)− T (z)‖A = 〈T (x)− T (z) , T (x)− T (z)〉1/2A ?
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• how is the penalty in b) related to ‖gb‖A (the norm of the linear combi-
nation of functions in the function space)?

4. (6E2-13) Consider a toy 2-class classification problem with p = 1 and
discrete conditional distributions of x indicated in the following table.

x 1 2 3 4 5 6 7 8 9 10
p (x|y = 1) .04 .07 .06 .03 .24 0 .02 .09 .25 .2
p (x|y = 0) .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

a) If P [y = 1] = 2/3 what is the optimal classifier here and what is its error
rate (for 0-1 loss)?
b) If one cannot observe x completely, but only

x∗ =


2 if x is 1 or 2
4 if x is 3 or 4
6 if x is 5 or 6
8 if x is 7 or 8

10 if x is 9 or 10

instead, what is the optimal classifier and what is its error rate (again assuming
that P [y = 1] = 2/3 and using 0-1 loss)?

5. (6E1-19) Return to the situation of Problem 9 of Section A.2. For this toy
dataset the 2 classes are balanced, and a 3-nearest-neighbor neighborhood has
a fraction of "class 1" cases 0, 13 ,

2
3 , or 1. Suppose that 3-nn results from this

training set will be used to produce a 0-1 loss classifier for a scenario in which
(there is severe class imbalance and) the actual probabilities of classes are π0 =
.1 and π1 = .9. Find (and carefully argue that it is correct) the classification
appropriate for an x for which the 3-nearest-neighbor neighborhood has fraction
1
3 of "class 1" cases.

6. (6E1-19) For voting function g (x) in a 2-class classification problem (with
−1-1 coding) and function losses h1 and h2 with I [v < 0] 6 h1 (v) 6 h2 (v),
presuming that P−1 (g (x) = 0|y = −1) = P1 (g (x) = 0|y = 1) = 0, the 0-1 loss
error rate of the classifier f (x) =sign(g (x)), namely

Err = EI [yg (x) < 0]

has upper bounds

b1 (g) = Eh1 (yg (x)) and b2 (g) = Eh2 (yg (x))

a) Why do you know that b1 (g) 6 b2 (g)? Under what circumstances will
it be the case that b1 (g) < b2 (g)?
b) If 1) g∗ minimizes b1 (g) over choices of g, 2) g∗∗ minimizes b2 (g) over

choices of g, and 3) in fact your conditions in a) are met to imply that b1 (g∗∗) <
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b2 (g∗∗), does it necessarily follow that g∗ is a strictly better voting function
(produces a better error rate) than g∗∗ for the original 0-1 loss classification
problem? Explain why or why not.

7. (DMC-19) The 2019 Data Mining Cup sponsored by Prudsys AG featured
a classification problem for fraud detection based on numerical characteristics
of self-checkout transactions at a retail location. The loss function employed,
L (ŷ, y) employed (actually, negative losses or "gains" were specified by the
company), was for ŷ and y belonging to {fraud, no fraud}

L (fraud, fraud) = −5, L (fraud, no fraud) = 25,

L (no fraud, fraud) = 5, and L (no fraud, no fraud) = 0

a) An optimal 2-class classifier for this problem decides in favor of fraud if
P [y = fraud|x] > c. Evaluate c.

b) An optimal 2-class classifier for this problem decides in favor of fraud
if L (x) ≡ (p (x|fraud) /p (x|no fraud)) > c∗ where c∗ depends upon πfraud .
Evaluate c∗ for πfraud = .1, .01, and .001.

8. (5HW-18) For the toy scenario of Problem 11 of Section A.3, consider a 2-
class classification model for y = 1 and y = 2. Suppose the object is to produce
a function O (x) minimizing (for independent x ∼ p (x|1) and x∗ ∼ p (x|2))

P [O(x) <O(x∗)]

a) Plot an optimizing function.
b) Cases i = 1, 2, . . . , 60 in a hypothetical test set have xi = −2 + (i/10)

and you must make an ordering of the test cases from "least to most likely"
to have corresponding yi = 2. Assign values 1 through 60 to the test set cases
(1 ↔ least likely to 60 ↔most likely) that you would submit in a predictive
analytics contest where the "AUC criterion" is used to judge performance.

A.5 Section 1.6 Exercises

1. (5HW-14) Return to the context of Problem 7 Section A.2.
a) Find the marginal densities for all of the p ((x1, x2) |k). Define 4 new den-

sities p∗ ((x1, x2) |k) on the unit square by the products of the 2marginals for the
corresponding p ((x1, x2) |k). Consider a 0-1 loss K = 4 classification problem
?approximating? the one in the original problem by using the p∗ ((x1, x2) |k) in
place of the p ((x1, x2) |k) for the π = (.25, .25, .25, .25) case. Make a 101× 101
grid of points of the form (i/100, j/100) for integers 0 6 i, j 6 100 and for each
such point determine the value of the optimal classifier for this new problem.
Using these values, make a plot (using a different plotting color and/or symbol
for each value of ŷ) showing the regions in (0, 1)

2 where the optimal classifier
classifies to each class. Compare this plot to the one in Problem 7 of Section
A.2. (The classifier here might be called a "naïve Bayes" classifier.)
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b) Find the p ((x1, x2) |k) conditional densities for x2|x1. Note that based
on these and the marginals in part a) you can simulate pairs from any of the 4
joint distributions by first using the inverse probability transform of a uniform
variable to simulate from the x1 marginal and then using the inverse probability
transform to simulate from the conditional of x2|x1. (It’s also easy to use a
rejection algorithm based on (x1, x2) pairs uniform on (0, 1)

2.)
c) Generate 2 datasets consisting of multiple independent pairs (x, y) where

y is uniform on {1, 2, 3, 4} and conditioned on y = k, the variable x has density
p ((x1, x2) |k). Make first a small training set with N = 400 pairs (to be used
below). Then make a larger test set of 10, 000 pairs. Use the test set to evaluate
the (conditional on the training set) error rates of the optimal rule from Problem
7 Section A.2 and then the "naïve" rule from part a).

d) Based on the N = 400 training set from c), for several different numbers
of neighbors (say 1, 3, 5, 10) make a plot like that required in part c) showing the
regions where the nearest neighbor classifier classifies to each of the 4 classes.
Then evaluate the (conditional on the small training sets) test error rates for
the nearest neighbor rules.
e) Based on the training set, one can make estimates of the 2-d densities as

p̂ (x|k) =
1

# [i with yi = k]

∑
i with yi=k

h
(
x|xi, σ2

)
for h

(
·|µ, σ2

)
the bivariate normal density with mean vector µ and covariance

matrix σ2I. (Try perhaps σ ≈ .1.) Using these estimates and the relative
frequencies of the possible values of y in the training set

π̂k =
# [i with yi = k]

N

an approximation of the optimal classifier is

f̂ (x) = arg max
k

π̂kp̂ (x|k) = arg max
k

∑
i with yi=k

h
(
x|xi, σ2

)
Make a plot like that required in part a) showing the regions where this classifies
to each of the 4 classes. Then evaluate the (conditional on the training set) test
error rate for this classifier.

A.6 Section 2.1 Exercises

1. (5E1-16) Kernel methods in statistical learning are built on the fact that
for a legitimate kernel function K (x, z) there is an abstract linear space A and a
(non-linear) transform T (x) from <p to that space for which the inner product
of transformed elements of <p is

〈T (x) , T (z)〉A = K (x, z)
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Use the Gaussian kernel function K (x, z) = exp
(
−‖x−z‖2

)
in what fol-

lows. (‖·‖ is the usual <p norm.)
a) For an input vector xi ∈ <2, what is the norm of T (xi) in the abstract

space?
b) For input vectors xi ∈ <2 and xl ∈ <2, how is the distance between

T (xi) and T (xl) in the abstract space related to the distance between xi and
xl in <p?

2. (6E1-11) Consider the p-dimensional input space <p and kernel functions
mapping <p ×<p → <.

a) Show that for φ : <p → <, the function K (x,z) = φ (x)φ (z) is a valid
kernel. (You must show that for distinct x1,x2, . . . ,xN , the N × N matrix
K = (K(xi,xj)) is non-negative definite.)
b) Show that for two kernels K1 (x,z) and K2 (x,z) and two positive con-

stants c1 and c2, the function c1K1 (x,z) + c2K2 (x,z) is a kernel.
c) By virtue of a) and b), the functions K1 (x, z) = 1 + xz and K2 (x, z) =

1 + 2xz are both kernels on [−1, 1]
2. They produce inner product spaces of

functions. Show these are different.

3. (6E1-15) Consider the small space of functions on [−1, 1]
2 that are linear

combinations of the 4 functions 1, x1, x2, and x1x2, with inner product defined
by 〈h, g〉 =

∫∫
[−1,1]2

h (x1, x2) g (x1, x2) dx1dx2. Find the element of this space

closest to h (x1, x2) = x21 + x22 (in the L2
(

[−1, 1]
2
)
function space norm ‖g‖ ≡

〈g, g〉1/2). (Note that the functions 1, x1, x2, and x1x2 are orthogonal with this
inner product.)

A.7 Section 2.2 Exercises

1. (6HW-15) Consider the linear space of functions on [−π, π] of the form

h (t) = a+ bt+ c sin t+ d cos t

Equip this space with the inner product 〈u, g〉 ≡
π∫
−π

u (t) g (t) dt and norm ‖g‖ ≡

〈g, g〉1/2. Use the Gram-Schmidt process to orthogonalize the set of functions
{1, t, sin t, cos t} and produce an orthonormal basis for the space.

2. (6HW-11) Consider the linear space of functions on [0, 1] of the form

h (t) = a+ bt+ ct2 + dt3

Equip this space with the inner product 〈u, g〉 ≡
∫ 1
0
u (t) g (t) dt and norm ‖f‖ =

〈g, g〉1/2. Use the Gram-Schmidt process to orthogonalize the set of functions{
1, t, t2, t3

}
and produce an orthonormal basis for the space.
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3. (6HW-13) Consider the linear space of functions on [0, 1]
2 of the form

h (t, s) = a+ bt+ cs+ dt2 + es2 + hts

Equip this space with the inner product 〈u, g〉 ≡
∫∫

[0,1]2
u (t, s) g (t, s) dtds and

norm ‖g‖ = 〈g, g〉1/2. Use the Gram-Schmidt process to orthogonalize the set
of functions

{
1, t, s, t2, s2, ts

}
and produce an orthonormal basis for the space.

4. (6E1-11) Consider the space of functions on [−2, 2] corresponding to the
kernel K (x, z) = 1 + xz · exp (x+ z) on [−2, 2]

2. (All functions K (x, c) of x
for a c ∈ [−2, 2] belong to the image of [−2, 2] under the non-linear transform
T (x) (·) = K (x, ·).)
a) Show that the functions g (x) = 1 and h (x) = x exp (x) both belong to

this image of the transform T .
b) Determine whether or not g and h are orthonormal. If they are not, find

an orthonormal basis for the span of {g, h}.

5. (6E2-13) Consider the function K ((x, y) , (u, v)) mapping [−1, 1]
2× [−1, 1]

2

to < defined by

K ((x, y) , (u, v)) = (1 + xu+ yv)
2

+ exp
(
− (x− u)

2 − (y − v)
2
)

on its domain.
a) Argue carefully that K is a legitimate "kernel" function.
b) Pick any two linearly independent elements of the space of functions that

are linear combinations of "slices" of the kernel, K ((x, y) , ·), for an (x, y) ∈ [−1, 1]
2

and find an orthonormal basis for the 2-dimensional linear sub-space they span.

6. (5E1-18) The function

K (x,z) = exp (− |x1 − z1| − |x2 − z2|)

mapping <2×<2 → < is a kernel function. Consider three real-valued functions
(of z ∈ <2):

T ((1, 0)) (z) = K ((1, 0) ,z) = exp (− |1− z1| − |z2|) ,
T ((0, 1)) (z) = K ((0, 1) ,z) = exp (− |z1| − |1− z2|) , and
T ((0, 0)) (z) = K ((0, 0) ,z) = exp (− |z1| − |z2|)

Using the inner product for the linear space of functions mapping <2 → <
defined for kernel slices by 〈T (x) , T (w)〉A = K (x,w), find the projection of
T ((0, 0)) onto the subspace of functions spanned by the two functions T ((1, 0))
and T ((0, 1)) (i.e. the set of all linear combinations c · T ((1, 0)) + d · T ((0, 1))
for constants c and d).
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7. (5HW-18) Below is a small fake dataset with p = 2 and N = 8.

x1 x2 y
1 0 2.03
0 1 .56
−1 0 −2.21

0 −1 −1.46
2 2 5.78
−1 1 −.72
−2 −2 −6.46

1 −1 1.37

First center the y values and standardize both x1 and x2. (We will abuse
notation and use x and z to stand for standardized versions of input vectors.)

Make use of the kernel function K (x,z) = exp
(
−‖x−z‖2

)
and the mapping

T (x) = K (x, ·) that associates with input vector x ∈ <2 the function K (x, ·) :
<2 → < (an abstract "feature"). In the (very high-dimensional) space of
functions mapping <2 → <, the N = 8 training set generates an 8-d subspace
of functions consisting of all linear combinations of the T (xi). Two possible
inner products in that subspace are the "L2" inner product

〈g, h〉L2 =

∫∫
<2

g (x)h (x) dx

and the inner product defined for functions in the range of T (·) by

〈T (x) , T (z)〉A = K (x,z)

Apply the first 3 steps of the Gram-Schmidt process to the abstract features of
the training data (considered in the order given in the data table) to identify 3 or-
thonormal functions <2 → < that are linear combinations of T (x1) , T (x2) , T (x3).
Do this first using the L2 inner product, and then using the kernel-based inner
product. Are the two sets of 3 functions the same?

A.8 Section 2.3 Exercises

1. (6HW-15) Consider the 5× 4 data matrix

X =


2 4 7 2
4 3 5 5
3 4 6 1
5 2 4 2
1 3 4 4


a) Use R and find the QR and singular value decompositions of X. What

are the two corresponding bases for C (X)?
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b) Use the singular value decomposition of X to find the eigen (spectral)
decompositions of X ′X and XX ′ (what are eigenvalues and eigenvectors?).
c) Find the best rank = 1 and rank = 2 approximations to X.

2. (6HW-11) Carry out the steps of Problem 1 above using the matrix

X =


1 1 1
2 1 1
1 2 1
2 2 1



3. (6E2-15) Here is some simple R code and output for a small N = 5 and
p = 4 dataset.

>X
[,1] [,2] [,3] [,4]

[1,] 0.4 2 -0.5 0
[2,] -0.1 0 -0.3 1
[3,] 0.4 0 -0.1 0
[4,] 0.4 0 0.0 -1
[5,] 0.1 2 0.7 0
>
>svd(X)
$d
[1] 2.8551157 1.4762267 0.9397253 0.3549439
$u

[,1] [,2] [,3] [,4]
[1,] 0.70256076 0.06562895 0.6458656 -0.2618499
[2,] -0.01458943 0.69768837 0.1798028 0.2661822
[3,] 0.01628552 -0.05282808 0.2689008 0.8815301
[4,] 0.02268773 -0.71093125 0.2403923 0.1625961
[5,] 0.71092586 -0.02664090 -0.6484076 0.2388488
$v

[,1] [,2] [,3] [,4]
[1,] 0.12929953 -0.23823242 0.403567340 0.8738766
[2,] 0.99014314 0.05282123 -0.005410155 -0.1296041
[3,] 0.05222766 -0.17306746 -0.912659300 0.3665691
[4,] -0.01305627 0.95420275 -0.064475843 0.2918382

a) What is the best rank = 2 approximation to the 5 × 4 data matrix (in
terms of "Frobenius norm" of the difference betweenX and the approximation)?
b) Interpret the fact that by far the largest (in absolute value) number in

the first column of the "v" matrix is .99014314.
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A.9 Section 2.4 Exercises

1. (6HW-15) Center the columns ofX from Problem 1 of Section A.8 to make
the centered data matrix X̃.
a) Find the singular value decomposition of X̃. What are the principal

component directions and principal components for the data matrix? What are
the "loadings" of the first principal component?
b) Find the best rank = 1 and rank = 2 approximations to X̃.

c) Find the eigen decomposition of the sample covariance matrix 1
5X̃
′
X̃.

Find best 1- and 2-component approximations to this covariance matrix.

d) Now standardize the columns of X to make the matrix
˜̃
X. Repeat

parts a), b), and c) using this matrix ˜̃X.
2. (6HW-11) Carry out the steps of Problem 1 above using the matrix X
from Problem 2 of Section A.8.

3. (5HW-14) Consider the small (7× 3 ) fake X matrix below.

X =



10 10 .1
11 11 −.1
9 9 0

11 9 −2.1
9 11 2.1

12 8 −4.0
8 12 4.0


(Note, by the way, that x3 ≈ x2 − x1.)

a) Find the QR and singular value decompositions of X. Use the latter
and give best rank = 1 and rank = 2 approximations to X.

b) Subtract column means from the columns of X to make a centered data
matrix. Find the singular value decomposition of this matrix. Is it approx-
imately the same as that in part a)? Give the 3 vectors of the principal
component scores. What are the principal components for case 1?

Henceforth consider only the centered data matrix of b).
c) What are the singular values? How do you interpret their relative sizes

in this context? What are the first two principal component directions? What
are the loadings of the first two principal component directions on x3? What is
the third principal component direction? Make scatterplots of 7 points (x1, x2)
and then 7 points with first coordinate the 1st principal component score and
the second the 2nd principal component score. How do these compare? Do
you expect them to be similar in light of the sizes of the singular values?
d) Find the matrices Xvjv′j for j = 1, 2, 3 and the best rank = 1 and

rank = 2 approximations to X. How are the latter related to the former?
e) Compute the (N divisor) 3× 3 sample covariance matrix for the 7 cases.

Then find its singular value decomposition and its eigenvalue decomposition.
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Are the eigenvectors of the sample covariance matrix related to the principal
component directions of the (centered) data matrix? If so, how? Are the eigen-
values/singular values of the sample covariance matrix related to the singular
values of the (centered) data matrix. If so, how?

4. (5HW-16) Consider the small (N = 11) fake p = 2 set of predictors in the
table below.

x1 11 12 13 14 13 15 17 16 17 18 19
x2 18 12 14 16 6 10 14 4 6 8 2

a) Plot raw and standardized versions of 11 predictor pairs (x1, x2) on the
same set of axes (using different plotting symbols for the two versions and a 1:1
aspect ratio for the plotting). (One can standardize variables in R using the
scale() function.)
b) Find sample means, sample standard deviations, and the sample correla-

tions for both versions of the predictor pairs.
c) Consider the small (11 × 2) fake X matrices corresponding to the raw

and standardized versions of the data. Interpret the first principal component
direction vectors for the two versions and say why (in geometric terms) they are
much different.

5. (5HW-14) The functions

K1 (x,z) = exp
(
−γ ‖x−z‖2

)
and

K2 (x,z) = (1 + 〈x,z〉)d

are legitimate kernel functions for choice of γ > 0 and positive integer d. Find
the first two kernel principal component vectors for X in Problem 3 above for
each of cases

• K1 with two different values of γ (of your choosing), and

• K2 for d = 1, 2.

If there is anything to interpret (and there may not be) give interpretations
of the pairs of principal component vectors for each of the 4 cases. (Be sure to
use the vectors for "centered versions" of the function space principal component
"direction vectors"/functions.)

6. (6HW-17) The function of (x, z) ∈ <p ×<p defined by

K (x, z) = (1 + c 〈x, z〉)d

for c > 0 and positive integer d is well-known to be a kernel function.
a) Argue that indeed K is a kernel function (is non-negative definite) using

the facts from Bishop quoted in Section 1.4.3.
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For d = 2 consider the c = 1 and c = 2 cases of this construction for p = 2.
b) Describe the sets of functions mapping <2 → < that comprise the abstract

linear spaces associated with the reproducing kernels. What is the dimension
of these spaces?
c) Identify for each case a transform T : <2 → <M so that

K (x, z) = 〈T (x) , T (z)〉

(an ordinary <M inner product of the transformed data vectors).
d) For x and z belonging to <2 find the distances in the two inner product

function spaces between T (x) (·) = K (x, ·) and T (z) (·) = K (z, ·). (Notice
that these are not the same. Metrics implied by the kernels change with the
kernels.)
e) Below is a small fake dataset. For the c = 1 case, consider these data in

the order listed and use as many of the data vectors as necessary to produce
a (data-dependent) orthonormal basis for the function space spanned by the
T (xi) (·). (Use the Gram-Schmidt process in the abstract space.)

x1 x2
1 0
0 1
−1 0

0 −1
2 2
−1 1
−2 −2

1 −1

f) Note that the fake dataset of part e) is centered in <2. Find ordinary prin-
cipal component direction vectors v1 and v2 and corresponding 8-dimensional
vectors of principal component scores for the dataset. Then find the first two
kernel principal component vectors corresponding to the c = 1 case of K.

7. (6E1-13) Consider a small fake dataset consisting of N = 6 data vectors in
<2 and use of a kernel function (mapping <2 × <2 → <) defined by K (x,z) =
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exp
(
−3 ‖x−z‖2

)
. The data and Gram matrices are

X =


−1.01 −.99
−.99 −1.01
−.01 .01

0 0
.01 −.01

2.00 2.00

 ≈

−1 −1
−1 −1

0 0
0 0
0 0
2 2



and K =


1 .998 .003 .003 .003 .000

.998 1 .003 .003 .003 .000

.003 .003 1 .999 .998 .000

.003 .003 .999 1 .999 .000

.003 .003 .998 .999 1 .000

.000 .000 .000 .000 .000 1

 ≈


1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1


As it turns out (using the approximate form for K)

C = K − 1

6
JK − 1

6
KJ +

1

36
JKJ

has (approximately) a SVD with two non-zero singular values (namely 2.43 and
1.23) and corresponding vectors of principal components

u1 = (−.51,−.51, .39, .39, .39,−.15)
′ and u2 = (−.27,−.27,−.12,−.12,−.12, .9)

′

Say what both principal components analysis on the raw data and kernel prin-
cipal components indicate about these data.

8. (6E1-19) Let

X =



15 5 1
15 5 −1
5 15 1
5 15 −1
−5 −15 1
−5 −15 −1
−15 −5 1
−15 −5 −1


U =

(
1√
8

)


1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1


D = diag

 40
20

2
√

2

 and V =

 1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1


U ,D, and V are the elements of the SVD for X. Use this to answer the
following.
a) Find the best rank = 1 approximation to the matrix X.
b) Identify a (3 × 1) unit vector w such that the 8 row vectors in X lie

"nearly on" a plane in <3 perpendicular to w.
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c) Give the eigen decomposition of the (8-divisor) sample covariance matrix
of a p = 3 dataset with cases given by the rows of X. (Give the 3 eigenvalues
and corresponding eigenvectors.)

9. (6E2-15) 6. Below is a small fake p = 2 dataset and a scatterplot for it.
Consider making graphical spectral features for the dataset, using the symmetric
set of index pairs N2 (based on 3-nearest-neighbor neighborhoods—a neighbor-
hood including the point itself) and weight function w (d) = exp

(
−d2

)
. Set up

an appropriate adjacency matrix and give the 8 node degrees.

10. (5HW-18) Return to the context of Problem 7 of Section A.7. Note that

the function MT = 1
8

8∑
i=1

T (xi) is a linear combinations of (is in the subspace

of functions generated by) the T (xi). It makes sense to "center" the abstract
features generated by the training set, replacing each T (xi) with

S (xi) = T (xi)−MT

a) Compute the matrix

C =
(
〈S (xi) , S (xj)〉A

)
i = 1, 2, . . . , 8
j = 1, 2, . . . , 8

that is the "centered Gram matrix" for kernel PCA in displays (48) and (49).
c) Do an eigen analysis for the matrix C. (For Euclidean features, this

matrix would be a multiple of a sample covariance matrix.) The eigenvectors
of this matrix give kernel principal component scores for the dataset. Consider
the first and second of these. To the extent possible, provide interpretations
for them.
d) Find the projection of the function S (.5, .5) onto the span of {T (xi)}i=1,...,8

in A and compare contour plots for the function and its projection.

11. (5HW-16) A small example of Prof. Morris involves an N = 11 point
dataset in the table below.

y 1.003 .807 .669 .628 .554 .511 .531 .502 .610 .701 .942
x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

280



Center the y values and standardize x. (We will abuse notation and use x
and z to stand for standardized versions of input values.)

This question will make use of the kernel functionK (x, z) = exp
(
−.5 (x− z)2

)
and the mapping T (x) (·) = K (x, ·) that associates with input value x ∈ <
the function K (x, ·) : < → < (an abstract "feature"). In the (very high-
dimensional) space of functions mapping < → <, the N = 11 training set
generates an 11-d subspace of functions consisting of all linear combinations

of the T (xi). As in Problem 10 above set MT = 1
11

11∑
i=1

T (xi) and define

S (xi) = T (xi)−MT .
a) Compute the matrix

C =
(
〈S (xi) , S (xj)〉A

)
i = 1, 2, . . . , 11
j = 1, 2, . . . , 11

that is the "centered Gram matrix" for kernel PCA in displays (48) and (49).
c) Do an eigen analysis for the matrix C. (For Euclidean features, this

matrix would be a multiple of a sample covariance matrix.) The eigenvectors
of this matrix give kernel principal component scores for the dataset. Consider
the first and second of these. To the extent possible, provide interpretations
for them.
d) Find the projection of the function S (.65) onto the span of {T (xi)}i=1,...,11

in A and plot the function and its projection on the same set of axes.

A.10 Section 3.1 Exercises

1. (6HW-11) Consider "data augmentation" methods of penalized least squares
fitting.
a) Augment a centered X matrix with p new rows given by

√
λ I
p×p

and Y

by adding p new entries 0. Argue that OLS fitting with the augmented dataset

returns β̂
ridge
λ as a fitted coeffi cient vector.

b) Show how the elastic net fitted coeffi cient vector β̂
enet
λ1,λ2 could be found

using lasso software and an appropriate augmented dataset.

2. (6E1-11) Consider the p = 3 linear prediction problem with N = 5 and
training data

X =


1√
2

0 1√
20

0 1√
2

1√
20

0 − 1√
2

1√
20

− 1√
2

0 1√
20

0 0 − 4√
20

 and Y =


2
3
−1
−1
−3


In answering the following, use the notation that the jth column of X is xj .
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a) Find the fitted OLS coeffi cient vector β̂
ols
.

b) For λ = 10 find the vector c ∈ <3 minimizing(
Y −X diag(c)β̂

ols)′ (
Y −X diag(c)β̂

ols)
+ λ1′c

over choices of c with non-negative entries.

c) For λ > 0 find the fitted ridge coeffi cient vector, β̂
ridge
λ .

d) For λ > 0 find a fitted coeffi cient vector β̂
∗
λ minimizing (Y −Xb)′ (Y −Xb)+

λ
(
b22 + b23

)
as a function of b ∈ <3.

e) Carefully specify the entire Least Angle Regression path of either Ŷ or
β̂ values.

3. (6E1-13) Consider the p = 1 prediction problem with N = 8 and training
data as below.

X =



1 1
√

2 0 2 0 0 0

1 1
√

2 0 −2 0 0 0

1 1 −
√

2 0 0 2 0 0

1 1 −
√

2 0 0 −2 0 0

1 −1 0
√

2 0 0 2 0

1 −1 0
√

2 0 0 −2 0

1 −1 0 −
√

2 0 0 0 2

1 −1 0 −
√

2 0 0 0 −2


and Y =



8
4
4
0
2
3
6
5


Use the notation that the jth column of X is xj .

a) Find the fitted OLS coeffi cient vector β̂
ols
for a model including only

x1,x2,x3,x4 as predictors.

b) Center Y to create Y ∗ and let x∗j = 1
2
√
2
xj for each j . Find β̂

lasso
∈ <7

optimizing
8∑
i=1

y∗i − 8∑
j=2

bjx
∗
ij

2

+ 5

8∑
i=2

|bj |

over choices of b ∈ <7.
c) The LAR algorithm applied to Y ∗ and the set of predictors x∗j for j =

2, 3, . . . , 8 begins at Ŷ ∗ = 0 and takes a piecewise linear path through <8 to
Ŷ ∗

ols
. Identify the first two points in <8 at which the direction of the path

changes, call them W 1 and W 2. (Here you may well wish to use both the
connection between the LAR path and the lasso path and explicit formulas for
the lasso coeffi cients.)
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4. (5HW-14) Here is a small fake dataset with p = 4 and N = 8.

y x1 x2 x3 x4
3 1 1 1 1
−5 1 1 −1 1
13 1 −1 1 −1
9 1 −1 −1 −1
−3 −1 1 1 −1
−11 −1 1 −1 −1
−1 −1 −1 1 1
−5 −1 −1 −1 1

Notice that the y is centered and the xs are orthogonal (and can easily be
made orthonormal by dividing by

√
8). Use the explicit formulas for fitted

coeffi cients in the orthonormal features context to make plots (on a single set
of axes for each fitting method, 5 plots in total) of

1. β̂1, β̂2, β̂3, and β̂4 versus M for best subset (of size M) regression,

2. β̂1, β̂2, β̂3, and β̂4 versus λ for ridge regression,

3. β̂1, β̂2, β̂3, and β̂4 versus λ for lasso,

4. β̂1, β̂2, β̂3, and β̂4 versus λ for α = .5 in the elastic net penalty

N∑
i=1

(yi − ŷi)2 + λ

(1− α)

p∑
j=1

∣∣∣β̂j∣∣∣+ α

p∑
j=1

β̂2j


5. β̂1, β̂2, β̂3, and β̂4 versus λ for the non-negative garrote.

5. (6HW-11) (3.23 of HTF) Suppose that columns of X with rank p have
been standardized, as has Y . Suppose also that

1

N
|〈xj ,Y 〉| = λ ∀j = 1, . . . , p

Let β̂
ols
be the usual least squares coeffi cient vector and Ŷ

ols
be the usual

projection of Y onto the column space of X. Define Ŷ (α) = αXβ̂
ols
for

α ∈ [0, 1]. Find
1

N

∣∣∣〈xj ,Y −Ŷ (α)
〉∣∣∣ ∀j = 1, . . . , p

in terms of α, λ, and
(
Y −Ŷ ols

)′ (
Y −Ŷ ols

)
. Show this is decreasing in α.

What is the implication of this as regards the LAR algorithm?
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6. (5HW-14) Return to the context of Problem 13 of Section A.2 and the
last/largest set of predictors. Center the y vector to produce (say) Y ∗, remove
the column of 1s from the X matrix (giving a 100× 9 matrix) and standardize
the columns of the resulting matrix, to produce (say) X∗.
a) Augment Y ∗ to Y ∗∗ by adding 9 values 0 at the end of the vector (to

produce a 109× 1 vector) and for value λ = 4 augment X∗ to X∗∗ (a 109× 9
matrix) by adding 9 rows at the bottom of the matrix in the form of

√
λ I
9×9
.

What quantity does OLS based on these augmented data seek to optimize?
What is the relationship of this to a ridge regression objective?
b) Use trial and error and matrix calculations based on the explicit form

of β̂
ridge
λ given in Section 3.1.1 to identify a value λ̃ for which the error sum

of squares for ridge regression is about 1.5 times that of OLS in this problem.
Then make a series of at least 5 values from 0 to λ̃ to use as candidates for λ.
Choose one of these as an "optimal" ridge parameter λopt here based on 10-
fold cross-validation (as was done in Problem 13 of Section A.2). Compute the
corresponding predictions ŷridgei and plot both them and the OLS predictions
as functions of x (connect successive (x, ŷ) points with line segments). How do
the "optimal" ridge predictions based on the 9 predictors compare to the OLS
predictions based on the same 9 predictors?

7. (6E1-13) Consider prediction of a 0/1 (binary) response using a model that
says that for two (standardized) predictors z1 and z2

P [yi = 1| (z1i, z2i)] =
exp (α+ β1z1i + β2z2i)

1 + exp (α+ β1z1i + β2z2i)

(Training data are N vectors (z1i, z2i, yi).) For this problem, one might define
a (log-likelihood-based) training error as

err (a, b1, b2) =

N∑
i=1

ln (1 + exp (a+ b1z1i + b2z2i))−
N∑
i=1

yi (a+ b1z1i + b2z2i)

How would you regularize fitting of this model "in ridge regression style" (pe-
nalizing only b1 and b2 and not a)? Derive 3 equations that you would need to
solve simultaneously to carry out regularized fitting.

8. (6E2-13) Suppose that for a pair of positive constants λ1 6= λ2 the predictors
f̂1 and f̂2 are corresponding ridge regression predictors (their coeffi cient vectors
solve the unconstrained versions of the ridge minimization problem). Is then
the predictor

f̂ =
1

2
f̂1 +

1

2
f̂2

in general a ridge regression predictor? (Make a careful/convincing argument
one way or the other.)
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9. (6HW-15) Show the equivalence of the two forms of the optimization used
to produce the fitted ridge regression parameter. (That is, show that there is a

t (λ) such that β̂
ridge
λ = β̂

ridge
t(λ) and a λ (t) such that β̂

ridge
t = β̂

ridge
λ(t) .)

10. (5E1-16) (Ridge regression produces a "grouping effect" for highly corre-
lated predictors) Suppose that in a p-variable SEL prediction problem, input
variables x1, x2, x3 have very large absolute correlations. Upon standardization
(and arbitrary change of signs of the standardized variables so that all correla-
tions are positive) the variables are essentially the same, and every combination

3∑
j=1

wjx
′′
j for w1, w2, w3 with w1 + w2 + w3 = 1

is essentially the same. So every set of coeffi cients β1, β2, β3 with a given sum

B = β1+β2+β3 has nearly the same
3∑
j=1

βjx
′′
j . Argue then that any minimizer

of
N∑
i=1

(
yi −

(
β0 +

p∑
j=1

βjx
′′
j

))
+ λ

p∑
j=1

β2j has β̂ridge1 ≈ β̂ridge2 ≈ β̂ridge3 .

11. (5HW-18) For the situation of Problem 7 of Section A.7 (with centered
response and standardized inputs x1 and x2) do the following concerning linear
predictors

f̂ (x1, x2) = b1x1 + b2x2

a) Plot on the same set of axes the two values b1 and b2 as functions of λ
(or lnλ if that is easier to compute or interpret) for ridge regression predictors.
b) Plot on the same set of axes the two values b1 and b2 as functions of λ

(or lnλ if that is easier to compute or interpret) for lasso regression predictors.

A.11 Section 3.2 Exercises

1. (6E1-11) As it turns out
1√
2

1√
2

1√
20

0 − 1√
2

1√
2

+ 1√
20

0 1√
2
− 1√

2
+ 1√

20

− 1√
2
− 1√

2
1√
20

0 0 − 4√
20

 =


1√
2

0 1√
20

0 1√
2

1√
20

0 − 1√
2

1√
20

− 1√
2

0 1√
20

0 0 − 4√
20


 1 0 0

0 1
2 0

0 0 1
2

 1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2



Consider a p = 3 linear prediction problem where the matrix of training inputs,
X, is the matrix on the left above and Y ′ = (4, 2, 2, 0, 2).

a) Find the single principal component (M = 1) fitted coeffi cient vector
β̂
pcr
.
b) Find the single component (M = 1) partial least squares vector of pre-

dictions, Ŷ
pls
.
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2. (6HW-11) Beginning in its Section 5.6, Izenman’s book uses an example
where PET yarn density is to be predicted from its NIR spectrum. This is a
problem where N = 21 data vectors xj of length p = 268 are used to predict
the corresponding outputs yi. Izenman points out that the yarn data are to
be found in the pls package in R. (The package actually has N = 28 cases.
Use all of them in the following.) Get those data and make sure that all inputs
are standardized and the output is centered. (Use the N divisor for the sample
variance.)
a) Using the pls package, find the 1, 2, 3, and 4-component PCR and PLS

β̂ vectors.
b) Find the singular values for the matrix X and use them to plot the

function df(λ) for ridge regression. Identify values of λ corresponding to effective
degrees of freedom 1, 2, 3, and 4. Find corresponding ridge β̂ vectors.
c) Plot on the same set of axes β̂j versus j for the PCR, PLS and ridge vectors

for number of components/degrees of freedom 1. (Plot them as "functions,"

connecting consecutive plotted
(
j, β̂j

)
points with line segments.) Then do the

same for 2, 3, and 4 components/degrees of freedom.
d) It is (barely) possible to find that the best (in terms of R2) subsets ofM =

1, 2, 3, and 4 predictors for OLS are respectively, {x40},{x212, x246},{x25, x160, x215},
and {x160, x169, x231, x243}. Find their corresponding coeffi cient vectors. Use
the lars package in R and find the lasso coeffi cient vectors β̂ with exactly

M = 1, 2, 3, and 4 non-zero entries with the largest possible
268∑
j=1

∣∣∣β̂lassoj

∣∣∣ (for the
counts of non-zero entries).
e) If necessary, re-order/sort the cases by their values of yi (from smallest to

largest) to get a new indexing. Then plot on the same set of axes yi versus i and
ŷi versus i for ridge, PCR, PLS, best subset, and lasso regressions for number
of components/degrees of freedom/number of nonzero coeffi cients equal to 1.
(Plot them as "functions," connecting consecutive plotted (i, yi) or (i, ŷi) points
with line segments.) Then do the same for 2, 3, and 4 components/degrees of
freedom/counts of non-zero coeffi cients.
f) Use the glmnet package in R to do ridge regression and lasso regression

here. Find the value of λ for which your lasso coeffi cient vector in d) for M = 2
optimizes the quantity

N∑
i=1

(yi − ŷi)2 + λ

268∑
j=1

∣∣∣β̂j∣∣∣
(by matching the error sums of squares). Then, by using the trick of Problem
1 Section A.10 employ the package to find coeffi cient vectors β̂ optimizing

N∑
i=1

(yi − ŷi)2 + λ

(1− α)

268∑
j=1

∣∣∣β̂j∣∣∣+ α

268∑
j=1

β̂2j


for α = 0, .1, .2, . . . , 1.0. What effective degrees of freedom are associated with
the α = 1 version of this? How many of the coeffi cients βj are non-zero for each
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of the values of α? Compare error sum of squares for the raw elastic net pre-
dictors to that for the linear predictors using (modified elastic net) coeffi cients

(1 + λα) β̂enetλ,α

3. (5HW-18) For the situation of Problem 11 of Section A.10 find 1-component
PCA and PLS predictors.

4. (5E1-14) In a SEL prediction problem with N = 22, p = 5 standardized
predictor variables produce input matrix X

22×5
for centered response vector Y

22×1
.

The singular values of X are

5.970, 5.579, 4.583, 4.132, and .397

and some matrix products are

Y ′XX ′Y = 10.27,Y ′XX ′XX ′Y = 312.2, and

Y ′U = (−.145,−.53,−.026, .209,−.112)

for U from the singular value decomposition of X.
a)What are the effective degrees of freedom associated with ridge regression

in this context for ridge parameter λ = 2?
b) Write the M = 1 component PCR prediction vector Ŷ

pcr
as a function

of the first column of U , say u1.

c) Write the M = 1 component PLS prediction vector Ŷ
pls
as a function of

the vector XX ′Y , say w.

A.12 Section 4.1 Exercises

1. (6E1-17) Below are N = 8 training cases (xi, yi) for x ∈ [0, 1] and a
corresponding "design matrix" holding values of the first 8 Haar basis functions
(in the order ϕ,ψ, ψ1,0, ψ1,1, ψ2,0, ψ2,1, ψ2,2, ψ2,3) for the xi. Consider prediction
based on the values of the 8 Haar basis functions.

x
8×1

=



1/16
3/16
5/16
7/16
9/16

11/16
13/16
15/16


y
8×1

=



2
−1

3
−2

4
−3

5
−4


X
8×1

=



1 1
√

2 0 2 0 0 0

1 1
√

2 0 −2 0 0 0

1 1 −
√

2 0 0 2 0 0

1 1 −
√

2 0 0 −2 0 0

1 −1 0
√

2 0 0 2 0

1 −1 0
√

2 0 0 −2 0

1 −1 0 −
√

2 0 0 0 2

1 −1 0 −
√

2 0 0 0 −2


a) Find the OLS prediction vector ŷols here. (This is trivial. Note that the

8 columns of X are orthogonal.)
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b) Find the 1-component PLS prediction vector ŷpls here.
c) After normalizing the predictors (so that the <8 norm of each column

of the normalized X is 1) find the lasso prediction vector ŷlasso for the penalty
parameter λ = 10. (Center the vector of responses, remove the first column of
the X and work with an 8× 7 vector of inputs.)
d) Using the normalized version of the predictors referred to in part c) find

a vector of coeffi cients b that minimizes

(y−Xb)′ (y−Xb) + b′diag (0, 0, 0, 4, 4, 4, 4) b

2. (5HW-14) Return to the context of Problem 13 of Section A.2. Make up
a matrix of inputs based on x consisting of the values of Haar basis functions
up through order m = 3. (You will need to take the functions defined on [0, 1]
and re-scale their arguments to [−π, π]. For a function g : [0, 1]→ < this is the
function g∗ : [−π, π]→ < defined by g∗ (x) = g

(
x
2π + .5

)
.) This will produce a

100× 16 matrix Xh.

a) Find β̂
ols
and plot the corresponding ŷs as a function of x with the data

also plotted in scatterplot form.
b) Center y and standardize the columns of Xh. Find the lasso coeffi cient

vectors β̂ with exactlyM = 2, 4, and 8 non-zero entries with the largest possible
16∑
j=1

∣∣∣β̂lassoj

∣∣∣ (for the counts of non-zero entries). Plot the corresponding ŷs as a
function of x on the same set of axes, with the data also plotted in scatterplot
form.

3. (6HW-15) For an N = 100 dataset made up for Problem 17 of Section
A.2 make up a matrix of inputs based on x consisting of the values of Haar basis
functions up through order m = 3. This will produce a 100× 16 matrix Xh.

a) Find β̂
ols
and plot the corresponding ŷs as a function of x with the data

also plotted in scatterplot form.
b) Center y and standardize the columns of Xh. Find the lasso coeffi cient

vectors β̂ with exactlyM = 2, 4, and 8 non-zero entries with the largest possible
16∑
j=1

∣∣∣β̂lassoj

∣∣∣ (for the counts of non-zero entries). Plot the corresponding ŷs as a
function of x on the same set of axes, with the data also plotted in scatterplot
form.
4. (5E1-20) Here consider (square integrable) functions on the unit interval

(0, 1). Four such functions are

g1 (x) = I [0 < x < 1] , g2 (x) = I [0 < x < .5] , g3 (x) = I [0 < x < .25] , g4 (x) = I [.5 < x < .75]

(Ignore the values x = .25, .5, and .75. They have 0 probability and are a
nuisance.) Using the "L2" inner product defined by 〈f, g〉 ≡

∫ 1
0
f (x) g (x) dx

use the Gram-Schmidt process to make four orthonormal functions from these,
say h1 (x) , h2 (x) , h3 (x) , h4 (x) and say how they are related to the first 4 Haar
basis functions.
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A.13 Section 4.2 Exercises

1. (6HW-11) Find a set of basis functions for the natural (linear outside the
interval (ξ1, ξK)) quadratic regression splines with knots at ξ1 < ξ2 < · · · < ξK .

2. (6HW-11) (B-Splines) For a < ξ1 < ξ2 < · · · < ξK < b consider the B-
spline bases of order m, {Bi,m (x)} defined recursively as follows. For j < 1
define ξj = a, and for j > K let ξj = b. Define

Bi,1 (x) = I [ξi 6 x < ξi+1]

(in case ξi = ξi+1 take Bi,1 (x) ≡ 0) and then

Bi,m (x) =
x− ξi

ξi+m−1 − ξi
Bi,(m−1) (x) +

ξi+m − x
ξi+m − ξi+1

Bi+1,(m−1) (x)

(where we understand that if Bi,l (x) ≡ 0 its term drops out of the expression
above). For a = −0.1 and b = 1.1 and ξi = (i− 1) /10 for i = 1, 2, . . . , 11,
plot the non-zero Bi,3 (x). Consider all linear combinations of these functions.
Argue that any such linear combination is piecewise quadratic with first deriva-
tives at every ξi. If it is possible to do so, identify one or more linear constraints
on the coeffi cients (call them ci) that will make qc (x) =

∑
i

ciB3,i (x) linear to

the left of ξ1 (but otherwise minimally constrain the form of qc (x)).

3. (5E1-14) Suppose one desires to fit a function to N data pairs (xi, yi)
that is linear outside the interval [0, 1], is quadratic in each of the intervals
[0, .5] and [.5, 1] and has a first derivative for all x (has no sharp corners).
Specify 4 functions h1 (x) , h2 (x) , h3 (x) , and h4 (x) and one linear constraint
on coeffi cients β0, β1, β2, β3, and β4 so that the function

y = β0 + β1h1 (x) + β2h2 (x) + β3h3 (x) + β4h4 (x)

is of the desired form.

4. (6E1-11) Consider a toy p = 1 SEL prediction problem with training data
below.

x −1.0 −.75 −.50 −.25 0 .25 .50 .75 1.0
y 0 2 3 5 4 4 2 2 1

Set up anX matrix for ordinary multiple linear regression that could be used
to fit a linear regression spline with knots at ξ1 = −.5, ξ2 = 0, and ξ3 = .5. For
your set-up, what linear combination of fitted regression parameters produces
the prediction at x = 0?

5. (5HW-14) For the dataset of Problem 13 of Section A.2 make up a 100× 7
matrix Xh of inputs based on x consisting of the values of basis functions for
natural cubic splines with knots ξj

h1 (x) = 1, h2 (x) = x, and for j = 1, 2, . . . ,K − 2
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hj+2 (x) = (x− ξj)3+ −
(

ξK − ξj
ξK − ξK−1

)
(x− ξK−1)3+ +

(
ξK−1 − ξj
ξK − ξK−1

)
(x− ξK)

3
+

for the K = 7 knot values

ξ1 = −3.0, ξ2 = −2.0, ξ3 = −1.0, ξ4 = 0.0, ξ5 = 1.0, ξ6 = 2.0, ξ7 = 3.0

Find β̂
ols
and plot the corresponding natural cubic regression spline, with the

data also plotted in scatterplot form.

6. (6HW-15) For the dataset of Problem 17 of Section A.2 make up a 100× 7
matrix Xh of inputs based on x consisting of the values of basis functions for
natural cubic splines with knots ξj of the general form given in Problem 5 above
for the K = 7 knot values

ξ1 = 0, ξ2 = .1, ξ3 = .3, ξ4 = .5, ξ5 = .7, ξ6 = .9, ξ7 = 1.0

Find β̂
ols
and plot the corresponding natural cubic regression spline, with the

data also plotted in scatterplot form.

7. (6HW-17) You instructor will provide a dataset giving the maximum num-
bers of home runs hit by a "big league" professional baseball player in the US for
each of 145 consecutive seasons. Consider these as values y1, y2, . . . , y145 and
take xi = i. Consider the basis functions for natural cubic splines with knots
ξj of the general form in Problem 5 above. Using knots ξj = 2 + (j − 1) 14 for
j = 1, 2, . . . , 11 fit a natural cubic regression spline to the home run data. Plot
the fitted function on the same axes as the data points.

A.14 Section 4.3 Exercises

1. (6HW-13) Consider the space of continuous functions on [0, 1]× [0, 1] that
are linear (i.e. are of the form y = a+ bx1 + cx2) on each of the squares

S1 = [0, .5]×[0, .5] , S2 = [0, .5]×[.5, 1] , S3 = [.5, 1]×[0, .5] , and S4 = [.5, 1]×[.5, 1]

a) Find a set of basis functions for the space described above.
b) Your instructor will send you a dataset generated from a model with

E [y|x1, x2] = 2x1x2

Find the best fitting linear combination of the basis functions according to least
squares.
c) Describe a set of basis functions for all continuous functions on [0, 1]×[0, 1]

that for

0 = ξ0 < ξ1 < ξ2 < · · · < ξK−1 < ξK = 1 and 0 = η0 < η1 < · · · < ηM−1 < ηM = 1

are linear on each rectangle Skm = [ξk−1, ξk]× [ηm−1, ηm]. How many such basis
functions are needed to represent these functions?

290



A.15 Section 5.1 Exercises

1. (6HW-11) Suppose that a < x1 < x2 < · · · < xN < b and s (x) is a
natural cubic spline with knots at the xi interpolating the points (xi, yi) (i.e.
s (xi) = yi).
a) Let z (x) be any twice continuously differentiable function on [a, b] also

interpolating the points (xi, yi). Show that∫ b

a

(s′′ (x))
2
dx 6

∫ b

a

(z′′ (x))
2
dx

(Hint: Consider d (x) = z (x)− s (x), write∫ b

a

(d′′ (x))
2
dx =

∫ b

a

(z′′ (x))
2
dx−

∫ b

a

(s′′ (x))
2
dx− 2

∫ b

a

s′′ (x) d′′ (x) dx

and use integration by parts and the fact that s′′′ (x) is piecewise constant.)

b) Use a) and prove that the minimizer of
N∑
i=1

(yi − h (xi))
2
+λ
∫ b
a

(h′′ (x))
2
dx

over the set of twice continuously differentiable functions on [a, b] is a natural
cubic spline with knots at the xi.

2. (5HW-16) For p = 1 suppose that N observations (xi, yi) have distinct xi,
and for simplicity of notation, suppose that x1 < x2 < · · · < xN . Consider the
basis functions for natural cubic splines with K knots ξj given in Section 4.2:

h1 (x) = 1, h2 (x) = x, and for j = 1, 2, . . . ,K − 2

hj+2 (x) = (x− ξj)3+ −
(

ξK − ξj
ξK − ξK−1

)
(x− ξK−1)3+ +

(
ξK−1 − ξj
ξK − ξK−1

)
(x− ξK)

3
+

Take K = N and ξj = xj for j = 1, 2, . . . , N . Obviously, h1 and h2 have
second derivative functions that are everywhere 0 and the products of these
second derivatives with themselves or 2nd derivatives of other basis functions
must have 0 integral from a to b.

Then for j = 1, 2, 3, . . . , N − 2

h′′j+2 (x) = 6 (x− xj) I [xj 6 x 6 xN−1]

+ 6
(

(x− xj)−
(

xN−xj
xN−xN−1

)
(x− xN−1)

)
I [xN−1 6 x 6 xN ]

+ 6
(

(x− xj)−
(

xN−xj
xN−xN−1

)
(x− xN−1) +

(
xN−1−xj
xN−xN−1

)
(x− xN )

)
I [xN 6 x 6 b]

= 6 (x− xj) I [xj 6 x 6 xN−1]

+ 6
(
x
(
xj−xN−1
xN−xN−1

)
+ xN−1

(
xN−xj

xN−xN−1

)
− xj

)
I [xN−1 6 x 6 xN ]

= 6 (x− xj) I [xj 6 x 6 xN−1] + 6 (x− xN )
(
xj−xN−1
xN−xN−1

)
I [xN−1 6 x 6 xN ]
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Thus for j = 1, 2, 3, . . . , N − 2∫ b
a

(
h′′j+2 (x)

)2
dx

= 12

(
(xN−1 − xj)3 + (xN − xN−1)3

(
xN−1−xj
xN−xN−1

)2)
= 12

(
(xN−1 − xj)3 + (xN − xN−1) (xN−1 − xj)2

)
= 12 (xN−1 − xj)2 (xN − xj)

and for positive integers 1 6 j < k 6 N − 2∫ b
a
h′′j+2 (x)h′′k+2 (x) dx

= 36
(∫ xN−1

xk
(x− xj) (x− xk) dx+

∫ xN
xN−1

(x− xN )
2 (xj−xN−1)(xk−xN−1)

(xN−xN−1)2
dx
)

= 36
(
(xN−1−xk)3

3 + (xk − xj) (xN−1−xk)
2

2

)
− 36

(
(xj−xN−1)(xk−xN−1)

(xN−xN−1)2

)
(xN−1−xN )3

3

= 6 (xN−1 − xk)
2

(2 (xN−1 − xk) + 3 (xk − xj))− 12 (xj − xN−1) (xk − xN−1) (xN−1 − xN )

= 6 (xN−1 − xk)
2

(2xN−1 + xk − 3xj) + 12 (xN−1 − xk) (xN−1 − xj) (xN − xN−1)

Do the smoothing spline computations for the dataset of Problem 11 Section
A.9 "from scratch" using the above representations of the entries of the matrix
Ω. That is,
a) Compute the 11× 11 matrix Ω.
b) For λ = 1, 10−1, 10−2, 10−3, 10−4, 10−5, and 0 compute the smoother

matrices Sλ and the effective degrees of freedom.
c) Find the penalty matrixK and its eigen decomposition. Plot as functions

of xi (or just i assuming that you have ordered the values of x) the entries of
the eigenvectors of this matrix (connect successive points with line segments so
that you can see how these change in character as the corresponding eigenvalue
of K increases– the corresponding eigenvalue of Sλ decreases). Which <11
components of the observed Y are most suppressed in the smoothing operation?
Can you describe them in qualitative terms?

A.16 Section 5.2 Exercises

1. (6HW-11) A p = 2 dataset provided with these notes consists of N = 441

training vectors (x1i, x2i, yi) for the distinct pairs (x1i, x2i) in the set {−1.0,−.9, . . . , .9, 1.0}2
where the yi were generated as

yi =
sin (10 (x1i + x2i))

10 (x1i + x2i)
+ εi

(with the convention that sin (0) /0 = 1) for iid N
(

0, (.02)
2
)
variables εi.

a) Why should you expect MARS to be ineffective in producing a predictor
in this context? (You may want to experiment with the earth package in R
trying out MARS.)
b) Fit a thin plate spline to these data using the Tps function in the fields

package. Contour plot your results.
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2. (6HW-13) A p = 2 dataset provided with these notes consists of N = 81

training vectors (x1i, x2i, yi) for pairs (x1i, x2i) in the set {−2.0,−1.5, . . . , 1.5, 2.0}2
where the yi were generated as

yi =
(
x21i + x22i

)
/
(
1 +

(
x21i + x22i

))
+ εi

for iid N
(

0, (.1)
2
)
variables εi. Use it in the following.

a) Why should you expect MARS to be ineffective in producing a predictor
in this context? (You may want to experiment with the earth package in R
trying out MARS.)
b) Fit a thin plate spline to these data using the Tps function in the fields

package.

A.17 Section 5.3 Exercises

1. (6E1-13) Return to the scenario of Problem 3 of Section A.10.

a) Find Ŷ
penalty ∈ <8 optimizing

(Y −v)
′
(Y −v) + 〈v,x∗2〉

2
+ 2

(
〈v, x∗3〉

2
+ 〈v,x∗4〉

2
)

+ 4

8∑
j=5

〈
v, x∗j

〉2
over choices of v ∈ <8.
b) Find an 8× 8 smoother matrix S corresponding to the penalty in a) (a

matrix so that for any Y ∈ <8 a Ŷ penalty
optimizing the form in part a) is SY )

and plot values in the 4th row of this matrix against x− .500.

A.18 Section 6.1 Exercises

1. (6HW-11) Suppose that with p = 1,

y|x ∼ N
(

sin (12 (x+ .2))

x+ .2
, 1

)
and N = 101 training data pairs are available with xi = (i− 1) /100 for i =
1, 2, . . . , 101. A dataset like this is provided with these notes. Use it in the
following.
a) Fit all of the following using first 5 and then 9 effective degrees of freedom

• a cubic smoothing spline,

• a locally weighted linear regression smoother based on a normal density
kernel, and

• a locally weighted linear regression smoother based on a tri-cube kernel.
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Plot for 5 effective degrees of freedom all of yi and the 3 sets of smoothed
values against xi. Connect the consecutive (xi, ŷi) for each fit with line segments
so that they plot as "functions." Then redo the plotting for 9 effective degrees
of freedom.
b) For all of the fits in a) plot as a function of i the coeffi cients ci applied to

the observed yi in order to produce f̂ (x) =
101∑
i=1

ciyi for x = .05, .1, .2, .3. (Make

a different plot of three curves for 5 degrees of freedom and each of the values
x (four in all). Then redo the plotting for 9 degrees of freedom.)

2. (6HW-13) Suppose that with p = 1,

y|x ∼ N
(

sin

(
1.5

x+ .1

)
+ exp(−2x), (.5)

2

)
(the conditional standard deviation is .5) and N = 101 training data pairs are
available with xi = (i− 1) /100 for i = 1, 2, . . . , 101. A dataset like this is
provided with these notes. Use it in place of the dataset described in Problem
1 above and redo all of that problem.

3. (6E1-11) Suppose that P is such that x has pdf

p (x) =
3

2
I

[
0 < x <

1

2

]
+

1

2
I

[
1

2
< x < 1

]
on [0, 1]

and the conditional distribution of y|x is N(x, 1). Suppose training data (xi, yi)
for i = 1, . . . , N are iid P and that with φ the standard normal pdf, one uses
the Nadaraya-Watson estimator for E[y|x = .5] = .5,

f̂ (.5) =

N∑
i=1

yiφ (.5− xi)

N∑
i=1

φ (.5− xi)

Use the law of large numbers and the continuity of the ratio function and write
out the (in probability) limit for f̂ (.5) in terms of a ratio of two definite integrals
and then argue that the limit is not .5.

4. (6E1-11) Consider a toy problem where one is to employ locally weighted
straight line regression smoothing based on the Epanechnikov quadratic kernel
in a p = 1 context with training data given in Problem 4 of Section A.11. Using
a bandwidth of λ = .5, give a small (augmented) dataset for which ordinary
simple linear regression (OLS) will produce the smoothed prediction at x = 0

(that is, f̂.5 (0)) for the original training data.

5. (6E1-13) Return to the scenario of Problem 1 of Section A.17. If one accepts
the statistical conventional wisdom that (generalized) "spline" smoothing is
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nearly equivalent to kernel smoothing, in light of your plot in b) of that problem
identify a kernel that might provide smoothed values similar to those for the
penalty used there. (Name a kernel and choose a bandwidth.)

6. (6HW-15) In a p = 1 smoothing context like that of Problem 2 of Section
A.15, where N = 11 training data pairs (xi, yi) have x1 = 0, x2 = .1, x3 =
.2, . . . , x11 = 1.0, consider locally weighted linear regression based on a Gaussian
kernel.
a) Compute and plot effective degrees of freedom as a function of the band-

width, λ. (It may be most effective to make the plot with λ on a log scale or
some such.) Do simple numerical searches to identify values of λ corresponding
to effective degrees of freedom 2.5, 3, 4,and 5.
b) Compare the smoothing matrix "Sλ" for Problem 2 of Section A.15 for

4 effective degrees of freedom to the matrix "Lλ" in the present context also
producing 4 effective degrees of freedom. What is the 11×11 matrix difference?
Plot, as a function of column index, the values in the 1st, 3rd, and 5th rows of
the two matrices, connecting with line segments successive values from a given
row. (Connect consecutive plotted points for a given row of a given matrix and
use different plotting symbols, colors, and/or line weights and types so that you
can make qualitative comparisons of the nature of these.)

7. (6E1-17) Consider a 1-d N-W smoothing problem on [0, 2] for values of
xj = .1 (j − 1) for j = 1, 2, . . . , 21. Suppose that one uses weights

w (|i− j|) =

 .5 if i = j
.25 if |i− j| = 1

0 otherwise

to make smoothed values

ŷj =
∑21

i=1
w (|i− j|) yi

except for the "edge" cases where we’ll take ŷ1 = .5y1 + .5y2 and ŷ21 = .5y20 +
.5y21.
a) For S the smoother matrix to be applied to a vector of observations Y =

(y1, y2, . . . , y21) to get smoothed values, what are effective degrees of freedom?
b) What are (except for the "edge" cases, now with indices j = 1, 2, 20, and

21) the weights, say w2 (|i− j|), used to make "doubly smoothed" values via
two successive applications of the original smoothing. That is, forŶ = SSY ?
What (approximately, you don’t need to get exactly the right terms for the edge
cases) are effective degrees of freedom for SS?

c) Consider local linear regression in this same context, where the original
weights are used and thus (except for edge cases) the slope and intercept used
to make ŷj are determined by minimizing

.25 (yj−1 − (β0 + β1xj−1))
2
+.5 (yj − (β0 + β1xj))

2
+.25 (yj+1 − (β0 + β1xj+1))

2
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(or equivalently 4 times this quantity). Ultimately (again except for edge
cases) what weights go into a smoother matrix for an "equivalent N-W ker-
nel smoother" in this case? (It may be helpful to recall that OLS for SLR

produces b1 =

(
N∑
i=1

(yi − ȳ) (xi − x̄)

)
/

(
N∑
i=1

(xi − x̄)
2

)
and b0 = ȳ − b1x̄.)

d) Use R to compute the nth power of S for a reasonably large n. Why is
this form really no surprise?

8. (6E1-15) Here is (a rounded version of) a smoother matrix Sλ, for a N-W
smoother with Gaussian kernel for data with x′ = (0, 0.1, 0.2, . . . , 0.8, 0.9, 1.0).

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 0.47 0.35 0.14 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[2,] 0.26 0.35 0.26 0.11 0.02 0.00 0.00 0.00 0.00 0.00 0.00
[3,] 0.10 0.23 0.31 0.23 0.10 0.02 0.00 0.00 0.00 0.00 0.00
[4,] 0.02 0.09 0.23 0.31 0.23 0.09 0.02 0.00 0.00 0.00 0.00
[5,] 0.00 0.02 0.09 0.23 0.31 0.23 0.09 0.02 0.00 0.00 0.00
[6,] 0.00 0.00 0.02 0.09 0.23 0.31 0.23 0.09 0.02 0.00 0.00
[7,] 0.00 0.00 0.00 0.02 0.09 0.23 0.31 0.23 0.09 0.02 0.00
[8,] 0.00 0.00 0.00 0.00 0.02 0.09 0.23 0.31 0.23 0.09 0.02
[9,] 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.23 0.31 0.23 0.10
[10,] 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.11 0.26 0.35 0.26
[11,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.14 0.35 0.47

a) Approximately what bandwidth (λ) and effective degrees of freedom are
associated with this matrix?
b) A rounded version of the matrix product SλSλ is below. Thinking

of this product as itself a smoother matrix, what might you think of as "an
equivalent kernel"? (Give values of weights w (|i− j|) for i, j indices 1 to 11 so
that ŷj ≈

∑11
i=1 w (|i− j|) yi.)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] 0.33 0.32 0.21 0.10 0.03 0.01 0.00 0.00 0.00 0.00 0.00
[2,] 0.24 0.28 0.24 0.14 0.07 0.02 0.01 0.00 0.00 0.00 0.00
[3,] 0.14 0.21 0.24 0.20 0.12 0.06 0.02 0.01 0.00 0.00 0.00
[4,] 0.06 0.13 0.19 0.22 0.19 0.12 0.06 0.02 0.01 0.00 0.00
[5,] 0.02 0.06 0.12 0.19 0.22 0.19 0.12 0.06 0.02 0.01 0.00
[6,] 0.01 0.02 0.06 0.12 0.19 0.22 0.19 0.12 0.06 0.02 0.01
[7,] 0.00 0.01 0.02 0.06 0.12 0.19 0.22 0.19 0.12 0.06 0.02
[8,] 0.00 0.00 0.01 0.02 0.06 0.12 0.19 0.22 0.19 0.13 0.06
[9,] 0.00 0.00 0.00 0.01 0.02 0.06 0.12 0.20 0.24 0.21 0.14
[10,] 0.00 0.00 0.00 0.00 0.01 0.02 0.07 0.14 0.24 0.28 0.24
[11,] 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.10 0.21 0.32 0.33

c) Here is a bit of R code and more output for this problem.
>round(eigen(S)$values,3)
[1] 1.000 0.921 0.730 0.509 0.317 0.176 0.087 0.038 0.015 0.005 0.001
>round(eigen(S)$vectors[,1],3)
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[1] -0.302 -0.302 -0.302 -0.302 -0.302 -0.302 -0.302 -0.302 -0.302 -0.302
-0.302

While Sλ is not symmetric, it is non-singular and has 11 real eigenvalues
1 = d1 > d2 > · · · > d11 > 0 with corresponding linearly independent unit eigen-
vectors u1,u2, . . . ,u11 such that Sλuj = djuj . So with U = (u1,u2, . . . ,u11)
and D = diag (d1, d2, . . . , d11) we have SλU = UD and Sλ = UDU−1. The
output above provides the eigenvalues and u1.
The nth power of Sλ, S

n
λ, has a limit. What is it? Argue that your answer is

correct. What are the corresponding limits of SnλY and of the effective degrees
of freedom of Snλ?

9. (6HW-17) Consider again the home run dataset of Problem 7 Section A.13.
Fit with first approximately 5 and then 9 effective degrees of freedom

• a cubic smoothing spline (using smooth.spline()), and

• a locally weighted linear regression smoother based on a tri-cube kernel
(using loess(...,span= ,degree=1)) to the home run data.

Plot for approximately 5 effective degrees of freedom all of yi and the 2 sets
of smoothed values against xi. Connect the consecutive (xi, ŷi) for each fit with
line segments so that they plot as "functions." Then redo the plotting for 9
effective degrees of freedom.

10. (6HW-19) Consider again the fake data of Problem 2 of Section A.15.
Carry out the steps of Problem 9 above on this dataset.

11. (5E1-14) Below is a particular smoother matrix, S, for p = 1 data at
values x = 0, .1, .2, .3, . . . , .9, 1.0 (The labeling convention used below is x1 =
0, x2 = .1, x3 = .2, . . . , x11 = 1.0.)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
[1,] .721 .265 .013 .000 .000 .000 .000 .000 .000 .000 .000
[2,] .210 .570 .210 .010 .000 .000 .000 .000 .000 .000 .000
[3,] .010 .208 .564 .208 .010 .000 .000 .000 .000 .000 .000
[4,] .000 .010 .208 .564 .208 .010 .000 .000 .000 .000 .000
[5,] .000 .000 .010 .208 .564 .208 .010 .000 .000 .000 .000
[6,] .000 .000 .000 .010 .208 .564 .208 .010 .000 .000 .000
[7,] .000 .000 .000 .000 .010 .208 .564 .208 .010 .000 .000
[8,] .000 .000 .000 .000 .000 .010 .208 .564 .208 .010 .000
[9,] .000 .000 .000 .000 .000 .000 .010 .208 .564 .208 .010
[10,] .000 .000 .000 .000 .000 .000 .000 .010 .210 .570 .210
[11,] .000 .000 .000 .000 .000 .000 .000 .000 .013 .265 .721

a) What effective degrees of freedom are associated with this smoother?
b) Approximately what bandwidth is associated with this smoother?
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c) For training data as below, what is f̂ (.4)?

y 1 3 2 4 2 6 7 9 7 8 6
x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

A.19 Section 6.2 Exercises

1. (6HW-13) Apply 2-d locally weighted regression smoothing on the dataset
of Problem 1 of Section A.16 using the loess() function in R. "Surface plot/
perspective plot" this for 2 different choices of smoothing parameters along with
both the raw data and the mean function. (If nothing else, JMP will do this under
its "Graph" menu.)

2. (6HW-13) Apply 2-d locally weighted regression smoothing on the dataset
of Problem 2 of Section A.16 using the loess() function in R. "Surface plot/
perspective plot" this for 2 different choices of smoothing parameters along with
both the raw data and the mean function.

3. (5E1-16) Consider the small (N = 5) training set for a p = 2 SEL prediction
problem given in the table below and represented in the corresponding plot.

x1 x2 y
−1 0 4

0 −1 2
0 0 0
0 1 8
1 0 6

a) Find the OLS predictor of y of the form ŷ = f̂ (x) = b0+b1x1+b2x2. Show
"by hand" calculations. Note that predictors x1 and x2 can be standardized

to x′1 =
√

5
2x1 and x

′
2 =

√
5
2x2 and made orthonormal as x

′′
1 =

√
1
2x1 and

x′′2 =
√

1
2x2.

b) Consider the penalized least squares problem of minimizing (for ortho-
normal predictors x′′1 and x

′′
2) the quantity

5∑
i=1

(yi − (β0 + β1x
′′
1 + β2x

′′
2))

2
+ λ (|β1|+ |β2|)

Plot on the same set of axes minimizers β̂lasso1 and β̂lasso2 as functions of λ.

c) Evaluate the first PLS component z1 in this problem and find β̂
pls
∈

<2 (for centered y values and standardized predictors so that the matrix of

predictors x′ is 5 × 2) so that Ŷ pls = Xβ̂
pls
for a 1-component PLS predictor.

Show "by hand" calculations.
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d) Since standardization requires multiplying x1 and x2 by the same con-
stant, the 3-nn predictor here is the same whether computed on the raw (x1, x2)
values or after standardization. What is it? (It takes on only a few different
values. Give those values and specify the regions in which they pertain in terms
of the original variables.)
e) (Again, since standardization requires multiplying x1 and x2 by the same

constant) 2-d kernel smoothing methods applied on original and standardized
scales are equivalent. So consider locally weighted bivariate regression done
on the original scale using the Epanechnikov quadratic kernel and bandwidth
λ = 1. Write out (in completely explicit terms) the sum to be optimized by
choice of constants β0, β1, β2 in order to produce a prediction of the form ŷ =
β0+β1x1+β2x2 for the input vector

(
1
2 ,

1
2

)
. What is the value of this prediction?

A.20 Section 7.1 Exercises

1. (6HW-11) Consider again the situation of Problem 1 Section A.16. If
you were going to use a structured kernel and 1-d smoothing to produce a
predictor here, what form for the matrix A would work best? What would be
a completely ineffective choice of a matrix A? Use the good choice of A and
produce a corresponding set of predictions.

A.21 Section 8.1 Exercises

1. (6HW-11) Use JMP to do neural net fitting (with logistic sigmoidal function,
σ (·)) for the dataset in Problem 1 of Section A.18.
a) Find a neural net with an error sum of squares about like those for

the 9 degrees of freedom fits in Section A.18. Provide appropriate JMP re-
ports/summaries. You’ll be allowed to vary the number of hidden nodes for a
single-hidden-layer architecture and to vary a weight for a penalty made from a
sum of squares of coeffi cients. Each run of the routine makes several random
starts of an optimization algorithm. Extract the coeffi cients from the JMP run
and use them to plot the fitted function of x that you settle on. How does this
compare to the plotted fits produced in Problem 1 of Section A.18?
b) Try to reproduce what you got from JMP in a) using the R package

neuralnet (or any other you find that to work better).

2. (6HW-13) Carry out the steps of Problem 1 above on the data of Problem
2 of Section A.18.

3. (5HW-14) Return to the dataset of Problem 2 of Section A.16. Use the
neural network routines in JMP to fit the data to get an error sum of squares
like you got in Problem 2 of Section A.16. How complicated does the network
architecture have to be in order to do a good job fitting these data? Contour
or surface plot your fits.

4. (5HW-14) Use all of MARS, thin plate splines, local kernel-weighted lin-
ear regression, and neural nets to fit predictors to both the noiseless and the
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noisy "hat data." For those methods for which it’s easy to make contour or
surface plots, do so. Which methods seem most effective on this particular
dataset/function?

5. (6E1-11) Consider a p = 2 prediction problem with continuous univariate
output y. Two possible methods of prediction are under consideration, namely

1. a neural net with single hidden layer and M = 2 hidden nodes (and single
output node) using σ (u) = 1/ (1 + exp (u)) and g (v) = v, and

2. a projection pursuit regression predictor withM = 2 summands gm (w′mx)
(based on cubic smoothing splines).

a) Argue carefully that in general, possibility 2 provides more flexibility in
fitting than possibility 1.
b) Note that unit vectors in <2 can be parameterized by a single real variable

θ ∈ (−π, π]. How would you go about choosing a version of possibility 2
that might be expected to provide only "about as much flexibility in fitting"
as possibility 1? (This will have to amount to some speculation, but make a
sensible suggestion based on "parameter counts.")

6. (6E1-13) Consider approximations to "simple functions" (linear combina-
tions of step functions) using single layer feed-forward neural network forms.
First say how you might produce an approximation of a function on <1 that
is an indicator function of any interval, I = (a, b) (finite or infinite), say
I [a < x < b]. Then argue that it’s possible to approximate any function of

the form g (x) =
M∑
l=1

clI [al < x < bl] on <1 using a neural network form.

7. (6HW-15) Again use the dataset of Problem 17 of Section A.2.
a) Fit with approximately 5 and then 9 effective degrees of freedom

i) a cubic smoothing spline (using smooth.spline()) , and
ii) a locally weighted linear regression smoother based on a tri-cube

kernel (using loess(...,span=,degree=1)).
Plot for approximately 5 effective degrees of freedom all of yi and the 2 sets

of smoothed values against xi. Connect the consecutive (xi, ŷi) for each fit with
line segments so that they plot as "functions." Then redo the plotting for 9
effective degrees of freedom.
b) Produce a single hidden layer neural net fit with an error sum of squares

about like those for the 9 degrees of freedom fits using nnet(). You may need
to vary the number of hidden nodes for a single-hidden-layer architecture and
vary the weight for a penalty made from a sum of squares of coeffi cients in order
to achieve this. For the function that you ultimately fit, extract the coeffi cients
and plot the fitted mean function. How does it compare to the plots made in
a)?
c) Each run of nnet() begins from a different random start and can produce

a different fitted function. Make 5 runs using the architecture and penalty
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parameter (the "decay" parameter) you settle on for part b) and save the 100
predicted values for the 10 runs into 10 vectors. Make a scatterplot matrix of
pairs of these sets of predicted values. How big are the correlations between the
different runs?
d) Use the avNNet() function from the caret package to average 20 neural

nets with your parameters from part b).

8. (6E2-15) Consider a p = 3 predictor 2-class neural net classifier, with a
single hidden layer having only 2 nodes.

a) Provide the network diagram for this situation and a corresponding like-
lihood term that might be associated with a training vector (x1i, x2i, x3i, yi)
where y has the −1 versus 1 coding.
b) Suppose that the inputs have been standardized, and completely specify

a lasso-motivated jointly continuous prior distribution for the model parame-
ters that might be expected to promote posterior sparsity/near-sparsity for the
model parameters.

9. (5E1-16) Below is a toy diagram for a very simple single hidden layer
"neural network" mean function of x ∈ < (i.e. p = 1). Suppose that out-
puts/responses y are essentially 3 if x < 17 and essentially 8 if 17 < x < 20, and
essentially 3 if x > 20. Identify numerical values of neural network parameters
α01, α11, α02, α12, β0, β1, β2 for which the corresponding predictor is a good ap-
proximation of the output mean function. (Here, σ (u) = 1/ (1 + exp (−u)) and
g (z) = z.)

10. (5HW-16) Carry out the steps of Problem 7 of this section using the
dataset of Problem 13 of Section A.2.

11. (5E1-14) A two-hidden-layer (with 2 nodes per hidden layer) single-input-
single-output feed-forward neural network with "activation function" σ (u) =
tanh (u) for a p = 1 prediction problem is fit to a particular N = 100 training
set. In notation like that used on Figure 25 this fitting results in

α̂201 = .005, α̂2x1 = −.082, α̂202 = .023, α̂2x2 = −.036

α̂101 = −.0007, α̂111 = .0004, α̂121 = −.0023, α̂102 = −.0037, α̂112 = −.0155, α̂122 = .0356

β̂0 = 1413, β̂1 = −50513, β̂2 = 850321
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Plot the SEL predictor of y implied by this set of fitted coeffi cients, f̂ (x).

A.22 Section 8.2 Exercises

1. (6HW-11) Consider radial basis functions built from kernels. In particular,
consider the choice D (t) = φ (t), the standard normal pdf.
a) For p = 1, plot on the same set of axes the 11 functions

Kλ (x, ξj) = D

(
|x− ξj |

λ

)
for ξj =

j − 1

10
j = 1, 2, . . . , 11

first for λ = .1 and then (in a separate plot) for λ = .01. Then make plots on
the a single set of axes the 11 normalized functions

Nλj (x) =
Kλ (x, ξj)
11∑
l=1

Kλ (x, ξl)

first for λ = .1, then in a separate plot for λ = .01.
b) For p = 2, consider the 121 basis functions

Kλ (x,ξij) = D

(
‖x−ξij‖

λ

)
for ξij =

(
i− 1

10
,
j − 1

10

)
i = 1, . . . , 11 and j = 1, . . . , 11

Make contour plots for K.1 (x,ξ6,6) and K.01 (x,ξ6,6). Then define

Nλij (x) =
Kλ (x,ξij)

11∑
m=1

11∑
l=1

Kλ (x,ξlm)

Make contour plots for N.1,6,6 (x) and N.01,6,6 (x).

2. (6HW-13) Consider again the data of Problem 1 of Section A.18. Fit
(training-set-dependent) radial basis function networks based on the standard
normal pdf φ,

fλ (x) = β0 +

101∑
i=1

βiKλ (x, xi) for Kλ (x, xi) = φ

(
‖x− xi‖

λ

)
to these data for two different values of λ. Then define normalized versions of
the radial basis functions as

Nλi (x) =
Kλ (x, xi)

101∑
m=1
Kλ (x, xm)

and redo the fitting using the normalized versions of the basis functions.
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3. (5HW-14) Fit radial basis function networks based on the standard normal
pdf φ,

fλ (x) = β0 +

81∑
i=1

βiKλ (x,xi) for Kλ (x,xi) = φ

(
‖x−xi‖

λ

)
to the data of Problem 2 Section A.16 for two different values of λ. Then define
normalized versions of the radial basis functions as

Nλi (x) =
Kλ (x,xi)

81∑
m=1
Kλ (x,xm)

and redo the fitting using the normalized versions of the basis functions.

4. (6HW-15) Fit radial basis function networks based on the standard normal
pdf φ,

fλ (x) = β0 +

51∑
m=1

βmKλ
(
x,
m− 1

50

)
for Kλ (x, z) = φ

(
|x− z|
λ

)
to the dataset of Problem 17 of Section A.2 for two different fixed values of λ.
Define normalized versions of the radial basis functions as

Nλi (x) =
Kλ
(
x, i−150

)
51∑
m=1
Kλ
(
x, m−150

)
and redo the fitting using the normalized versions of the basis functions.

A.23 Section 9.1 Exercises

1. (5E1-18) Use the training set in Problem 3 of Section A.2 without bothering
to center y, carefully build a binary regression tree with 6 final nodes (employing
5 splits, each at one of the values .2, .35, .5, .65, and .8). For each split, give the
associated SSE provided by the split. Make a tree diagram for representing
your development. If SSE is penalized by λ = 6 times the number of tree nodes,
which of the trees met in your construction is most attractive?

2. (6E2-11) Below is a small p = 2 classification training set (forK = 2 classes)
displayed in graphical and tabular forms (circles are class −1 and squares are
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class 1).

a) Using empirical misclassification rate as your splitting criterion and stan-
dard forward selection, find a reasonably simple binary tree classifier that has
training error rate 0. Provide the tree diagram and sketch the corresponding
rectangles on a plot like the one above.
b) For every sub-tree, T , of your full binary tree above, find the size (number

of final nodes) of the sub-tree, |T |, and the empirical error rate of its associated
classifier.
c) Using the values from b), find for every α > 0 a sub-tree of your full tree

minimizing
Cα = |T |+ α · err

3. (6E1-13) Consider the p = 1 prediction problem with N = 6 and training
data as below.

y 1.6 .4 3.5 1.5 5 6
x 1 2 3 4 5 6

Forward selection of binary trees for SEL prediction produces the sequence
of trees represented below. If one determines to prune back from the final
tree in optimal fashion, there is a nested sequence of subtrees that are the only
possible optimizers of Cα (T ) = |T | + αSSE(T ) for positive α. Identify that
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nested sequence of sub-trees of Tree 5 below.

4. (5HW-14) Your instructor will provide an N = 200 training set generated
from the "Friedman1" benchmark model (using the mlbench package in R. For
purposes of assessing test error, you will also be given a size 5000 test set
generated from this model.
a) Fit a single regression tree to the dataset. Prune the tree to get the

best sub-trees of all sizes from 1 final node to the maximum number of nodes
produced by the tree routine. Compute and plot cost-complexities Cα (T ) as a
function of α.
b) Evaluate a "test error" (based on the size 5000 test set) for each sub-tree

identified in a). What size sub-tree looks best based on these values?
c) Do 5-fold cross-validation on single regression trees to pick an appropriate

tree complexity (to pick one of the sub-trees from a)). How does that choice
compare to what you got in b) based on test error for the large test set?

5. (5HW-14) Return to the context of Problem 7 Section A.2 and Problem 1
Section A.5. Fit a classification tree to the dataset using 5-fold cross-validation
to choose tree size based on cost-complexity tuning. Make a plot like that
required in the earlier problems showing the regions where the tree classifies to
each of the 4 classes. Evaluate the (conditional on the training set) test error
rate for this tree.

6. (5E1-16) Below is a representation of a binary regression tree. Find a
subtree of this tree that minimizes the cost Cα (T ) = |T |+αSSE(T ) for α = .01.
(There are 7 subtrees to consider.) Identify the final nodes for the optimal
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subtree.

7. (5E2-14) Consider a context in which for a continuos input x ∈ [0, 1] the
conditional mean function E[y|x] is strictly increasing. Argue carefully that any
binary tree predictor must be positively biased at x = 0 and negatively biased
at x = 1 in this context.

A.24 Section 10.1 Exercises

1. (5E1-18) Use the training set in Problem 3 of Section A.2 and without
bothering to center y, consider bagging a SEL predictor for y of the form

f̂ (x) = b1I [x < .5] + b2I [x > .5]

fit by OLS. Below, B = 10 bootstrap samples are represented in terms of case
indices and the corresponding values of b1 and b2 are provided. Find an OOB
MSPE for a bagged predictor f̂10bag .

Bootstrap Sample b1 b2
2, 3, 5, 5, 5, 6 7.000 7.000
2, 2, 3, 4, 5, 6 6.000 9.333
1, 1, 1, 1, 2, 6 .8000 10.000
1, 1, 3, 4, 5, 6 3.333 9.333
1, 1, 2, 3, 5, 6 3.500 8.000
1, 1, 2, 4, 4, 5 1.333 10.000
2, 2, 2, 3, 5, 5 4.000 6.000
2, 3, 3, 4, 4, 5 8.000 10.000
1, 2, 2, 2, 3, 4 3.200 12.000
2, 3, 4, 5, 6, 6 7.000 8.666
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2. (6E1-19) All cases in a particularN = 100 training set are distinct/different.
Suppose that one is going to make "weighted bootstrap samples" of size 100,
using not equal weights of .01 on each case in the training set, but rather

weights/probabilities w1, w2, . . . , w100 (where each wi > 0 and
100∑
i=1

wi = 1).

a) What is the probability that a case with wi = .02 is included in a
particular weighted-bootstrap sample of size 100?
b) Suppose that for b = 1, 2, . . . , B the corresponding weighted bootstrap

sample is T ∗b and the sample mean of responses in this sample is ȳ
∗b. Further,

let ȳbag = 1
B

B∑
b=1

ȳ∗b. Find an expression for lim
B→∞

ȳbag and argue carefully that

your expression is correct.

A.25 Section 10.2 Exercises

1. (6E1-13) Consider a p = 1 prediction problem for x ∈ [0, 1] and random
forest predictor f̂∗B based on a training set of size N = 101 with xi = (i− 1) /100
for i = 1, . . . , 101 and nmin = 5 (so no split is made in creating a single tree pre-
dictor f̂∗b that would produce a leaf representing fewer than 5 training points).

a) Use simulation to approximate the expected value of the arithmetic
mean of the 5 largest of 101 values drawn at random with replacement from
{.00, .01, . . . , 1.00}. Call this value η.
b) Consider the bias of prediction at x = 1.00, namely

E
(
f̂∗B (1.00)− 1.00

)
under a model where Eyi = xi. Use your value η from a) to argue carefully
that this bias is clearly negative.

2. (5HW-14) Return to the context of Problem 4 of Section A.23.
a) Use the randomForest package in R to make a bagged version of a re-

gression tree (based on, say, B = 500). What is its OOB error? How does that
compare to a test error based on the size 5000 test set?
b)Make a random forest predictor using randomForest (use again B = 500).

What is its OOB error? How does that compare to a test error based on the
size 5000 test set?

3. (6E1-17) If, in a classification problem, all N inputs xi ∈ <p are distinct,
a default random forest (one with nmin = 1) will typically have err = 0 (a 0
training error rate for 0-1 loss) unless a "small" maximum tree depth is set.

a) Why is this? Explain.
b) Does this mean that the OOB error rate will be 0? Explain.
c) Does this mean that the OOB error rate is unreliable as a representing

likely random forest performance? Explain.

4. (6E2-15) Below is a small p = 2 classification training set (for 2 classes)
displayed in graphical and tabular forms (circles are class −1 and squares are
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class 1). A bootstrap sample is made from this dataset and is indicated in the
table and by counts next to plotted points for those points represented in the
sample other than once. This sample is used to create a tree in a random forest
with 4 end nodes (accomplished by 3 binary splits). A random choice is made
for which of the 2 variables to split on at each opportunity and turns out to
produce the sequence "x1 then x1 then x2."

a) Identify the resulting tree by rectangles on the plot and provide the value
of ŷ for each rectangle.
b) Which out-of-bag points are misclassified by this particular tree?

5. (5E1-16) A variant of the random forest algorithm begins by making a
random p-dimensional rotation of the predictors of a bootstrap sample before
building the tree for that bootstrap sample, f̂∗b. (You may, for example, think
of this in terms of the p = 2 case for inputs x, and rotating the 2-d coordinate
axes around the origin before doing splitting based on the 2 rotated axes.) What
about this innovation is attractive and what about it is unattractive?

A.26 Section 11.1 Exercises

1. (6HW-11) Below is a very small sample of fictitious p = 1 training data.

x 1 2 3 4 5
y 1 4 3 5 6

Consider a toy Bayesian model averaging problem where what is of interest
is a prediction for y at x = 3. Suppose that under Model 1, the (xi, yi) are iid
where x is Discrete Uniform on {1, 2, 3, 4, 5} and y|x is Binomial(10, p (x)) for
p (x) = Φ

(
x−a
b

)
(for Φ the standard normal cdf and b > 0). In this model, the

quantity of interest is 10 · Φ
(
3−a
b

)
.

On the other hand, suppose that under Model 2, the (xi, yi) are iid where
x is Discrete Uniform on {1, 2, 3, 4, 5} and y|x is Binomial(10, p (x)) for p (x) =
1 − 1

(c+1)x (for some c > 0). In this model, the quantity of interest is 10 ·(
1− 1

3(c+1)

)
.
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For prior distributions, suppose that for Model 1 a are b are a priori in-
dependent with a ∼U(0, 6) and b−1 ∼Exp(1), while for Model 2, c ∼Exp(1).
Further suppose that prior probabilities on the models are π (1) = π (2) = .5.
Compute (almost surely you’ll have to do this numerically) posterior means of
the quantities of interest in the two Bayes models, posterior probabilities for the
two models, and the overall predictor of y at x = 3.

2. (6E2-11) Consider a Bayesian model averaging problem where x takes
values in {0, 1} and y takes values in {0, 1}. The quantity of interest is

P [y = 1|x = 1] /P [y = 0|x = 1]

and there are M = 2 models under consideration. We’ll suppose that joint
probabilities for (x, y) are as given in the tables below for the two models for
some p ∈ (0, 1) and r ∈ (0, 1)

Model 1 Model 2
y \ x 0 1 y \ x 0 1
1 .25 .25 1 (1− r) /2 r/2
0 (1− p) /2 p/2 0 .25 .25

so that under Model 1, the quantity of interest is .5/p and under Model 2, it is
r/.5. Suppose that under both models, training data (xi, yi) for i = 1, . . . , N are
iid. For priors, suppose that in Model 1 a priori p ∼Beta(2, 2) and suppose that
in Model 2 a priori r ∼Beta(2, 2). Further, suppose that the prior probabilities
of the two models are π (1) = π (2) = .5.
Find the posterior probabilities of the 2 models, π (1|T ) and π (2|T ) and the

Bayes model average squared error loss predictor of P [y = 1|x = 1] /P [y = 0|x = 1].
(You may think of the training data as summarized in the 4 countsN(x,y) =number
of training vectors with value (x, y).)

3. (6E1-13) Consider a simple Bayes model averaging prediction problem with
iid training data (xi, yi) where xi ∈ {0, 1} and we assume that yi = µ (xi) + εi
for εi ∼ N (0, 1). Two models are contemplated. Model 1 says that µ (0) =

µ (1) = µ and a priori µ ∼N
(

0, (10)
2
)
. Model 2 says that µ (0) and µ (1)

are a priori independent with both µ (0) ∼N
(

0, (10)
2
)
and µ (1) ∼N

(
0, (10)

2
)
.

Assume that a priori the two models are equally likely. Training pairs (xi, yi)
are (0, 5) , (0, 7) , (0, 6) , (1, 12). Find an appropriate predicted value of y if x = 1.
You will find likely it helpful to recall that if conditioned on θ, observations

z1, . . . , zn are iid N(θ, 1) and θ is itself N
(
0, τ2

)
, then conditioned on z1, . . . , zn,

θ is N
((

n
n+ 1

τ2

)
z̄,
(
n+ 1

τ2

)−1)
4. (6E1-15) Below are tables specifying two discrete joint distributions for
(x, y) that we’ll call Model 1 and Model 2. Suppose that N = 2 training cases
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(drawn iid from one of the models) are (x1, y1) = (2, 2) and (x2, y2) = (3, 3).

Model 1
y�x 1 2 3

3 0 .125 .125
2 0 .125 .125
1 .125 .125 0
0 .125 .125 0

Model 2
y�x 1 2 3

3 0 0 .1
2 .1 .2 .1
1 .1 .2 .1
0 .1 0 0

Suppose further that prior probabilities for the two models are π1 = .3 and
π2 = .7.
a) Find the posterior probabilities of Models 1 and 2.
b) Find the "Bayes model averaging" SEL predictor of y based on x for

these training data. (Give values f̂ (1) , f̂ (2) , and f̂ (3).)

A.27 Section 11.2 Exercises

1. (6E2-11) The machine learning/data mining folklore is full of statements
like "combining uncorrelated classifiers through majority voting produces a com-
mittee classifier better than every individual in the committee." This is simply
not necessarily true. Consider the Vardeman and Morris scenario outlined in
the table below as regards the joint distribution of classifiers f1, f2, and f3 and
a target (class variable) y taking values in {0, 1}.

a) Find the expected 0-1 loss for the individual classifiers and for the "ma-
jority vote" classifier. Note that the classifiers are independent according to
this joint distribution.
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b) Treat the vector of values of f1, f2, and f3 as "available data" and find
the conditional distributions of the vector given y = 0 and y = 1. What is in
fact the best function of these classifiers in terms of expected expected 0-1 loss?
(Look again at Sections 1.4 and 1.5.) How does its error rate compare to the
error rates from a)?

A.28 Section 11.4 Exercises

1. (5E1-18) Again use the training set in Problem 3 of Section A.2 without
bothering to center y, consider using boosting to create a SEL predictor for it.
As your set of "basis functions for successive corrections" adopt the 10 indicator
functions

l1 (x) = I [x < .2] , l2 (x) = I [x < .35] , l3 (x) = I [x < .5] , l4 (x) = I [x < .65] ,
l5 (x) = I [x < .8] , u1 (x) = I [x > .2] , u2 (x) = I [x > .35] , u3 (x) = I [x > .5] ,
u4 (x) = I [x > .65] , u5 (x) = I [x > .8]

Take f̂0 (x) = ȳ and using a "learning rate" of .5, find f̂1 (x), the first boosted
iterate. (This will be f̂0 (x) plus a multiple of one of the indicator functions.)

2. (6HW-11) (Izenman Problem 14.4.) Consider 2-class classifaction problem
with input space <2 and N = 10 observations in the table below.

y 1 1 1 1 1 2 2 2 2 2
x1 1 3.5 4.5 6 1.5 8 3 4.5 8 2.5
x2 4 6.5 7.5 6 1.5 6.5 4.5 4 1.5 0

Plot the (x1, x2) pairs on a scatterplot using different symbols or colors to
distinguish the two classes (1 and 2). Carry through the AdaBoost.M1 algorithm
on these points "by hand" forM = 4 iterations, showing the weights at each step
of the process. Determine the voting function and final classifier and calculate
its training error rate.

3. (6E2-11) Find the M = 3 AdaBoost.M1 classifier for the data of Problem
2 of Section A.23.

4. (6HW-13) Consider the famous Swiss Bank Note dataset. Use caret
train() to choose (via LOOCV) both AdaBoost.M1 and random forest 0-1
loss classifiers based on these data. For a fine grid of points indicate on a 2-d
plot which points get classified to classes −1 and 1 so that you can make visual
comparisons.

5. (6HW-13) This problem concerns the "Seeds" dataset at the UCI Machine
Learning Repository. Standardize all p = 7 input variables before beginning
analysis.
a) Consider first the problem of classification where only varieties 1 and 3

are considered (temporarily code variety 1 as −1 and variety 3 as +1) and use
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only predictors x1 and x6 Use caret train() to choose (via LOOCV) both
AdaBoost.M1 and random forest 0-1 loss classifiers based on these data. For
a fine grid of points in [−3, 3]× [−3, 3], indicate on a 2-d plot which points get
classified to classes −1 and 1 so that you can make visual comparisons.
b) The paper "ada: An R Package for Stochastic Boosting" by Culp, John-

son, and Michailidis that appeared in the Journal of Statistical Software dis-
cusses using a one-versus-all strategy to move AdaBoost to a multi-class problem
known as the "AdaBoost.MH" algorithm. Continue the use of only predictors
x1 and x6 and find both an appropriate random forest classifier and an Ad-
aBoost.MH classifier for the 3-class problem with p = 2, and once more show
how the classifiers break the 2-d input space up into regions of constant classi-
fication.
c) How much better can you do at the classification task using a random

forest classifier based on all p = 7 input variables than you are able to do in
part b)? (Use LOOCV error rate to make your comparison.)

6. (6E2-13) Below is a toy K = 2 class training set for N = 4. Carry out ("by
hand") enough steps of the AdaBoost.M1 algorithm (find a number of iterations
M large enough) to produce a voting function with 0 training error rate. Plot
this function and indicate on the x axis which regions call for classification to
the y = 1 class.

y 1 −1 1 −1
x 1 2 3 5

7. (5HW-14) Return to the context of Problem 4 of Section A.23.
a) Use the gbm package in R to fit several boosted regression trees to the

training set (use at least 2 different values of tree depth with at least 2 different
values of learning rate). What are values of training error and then test error
based on the size 5000 test set for these?

b) How do predictors in Problem 4 of Section A.23, Problem 2 of Section
A.25, and here compare in terms of test error? Evaluate ŷ for each of the first
5 cases in your test set for all predictors and list all of the inputs and each of
the predictions in a small table.
c) Call your predictor from Problem 2 of Section A.25 f̂1 and pick one of

your predictors from a) to call f̂2. Use your test set and approximate

E
(
y − f̂1 (x)

)
,E
(
y − f̂2 (x)

)
,Var

(
y − f̂1 (x)

)
,Var

(
y − f̂2 (x)

)
,

and Corr
(
y − f̂1 (x) , y − f̂2 (x)

)
(these expectations are across the joint distribution of (x, y) for the fixed training
set (and randomization for the random forest). Identify an α approximately
optimizing

E
(
y −

(
αf̂1 (x) + (1− α) f̂2 (x)

))2
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Is the optimizer 0 or 1 (i.e. is the best linear combination of the two predictors
one of them alone)?

8. (6E1-19) Below is a toy p = 2 training set with N = 6. (The 6 values of
y are plotted near x = (x1, x2) locations corresponding to their input vectors.)
Consider SEL boosting using "2-split SEL regression trees" (trees with 3 final
nodes) as base predictors. (Two splits are made to produce each êm (x).)

a) Beginning with f̂0 (x) ≡ 7 and the first split of iteration 1 (for making
ê1 (x)) as indicated on the left figure, draw in the 2nd split. Using it and a
ν = .5 learning rate, place the N = 6 values yi − f̂1 (xi) onto the right figure.
On that, mark the 2 cuts for creating ê2 (x).
b) Then, again using a ν = .5 learning rate and now your ê2 (x) implied by

the 2 cuts on the right figure above, below show the regions on which f̂2 (x) is
constant and indicate the values of f̂2 (x) in those regions.

9. (6E1-17) Suppose that in a toy 2-class classification model with p = 1 using
the y ∈ {−1, 1} coding one has N = 5 training cases in the small table below.

y −1 −1 1 1 −1
x −1.5 −.5 .5 1.5 2.5

In a gradient boosting exercise with the hinge loss

5∑
i=1

(1− yig (xi))+
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and base functions I [x < c] and I [x > c] ∀c, suppose that one has a current
function version gm (x) = 3x. Derive the function gm+1 (x).

10. (6E1-15) Consider the p = 2 prediction problem based on N = 9 training
points as below.

Y =
1√
6



8
3
−3

5
−1
−5

1
−3
−5


and X = (x1,x2) =

1√
6



1 1
1 0
1 −1
0 1
0 0
0 −1
−1 1
−1 0
−1 −1


a) Find the SEL lasso coeffi cient vector β̂ optimizing SSE+8

(∣∣∣β̂lasso1

∣∣∣+
∣∣∣β̂lasso2

∣∣∣)
and give the corresponding Ŷ

lasso
.

b) "Boost" your lasso SEL predictor from a) using ridge regression with
λ = 1 and a learning rate of ν = .1. Give the resulting vector of predictions

Ŷ
boost1

.
c) Why is it clear that the predictor in b) is a linear predictor? What is β̂

such that Ŷ
boost1

= Xβ̂?
d) Now "boost" your SEL lasso predictor from a) using a best "stump"

regression tree predictor (one that makes only a single split) and a learning rate

of ν = .1. Give the resulting vector of predictions Ŷ
boost2

.

11. (6E2-15) The AdaBoostM.1 classification algorithm is essentially an ap-
plication of general gradient boosting to exponential loss and basic function
updates that are simple "binary stumps." This problem concerns applying the
algorithm with hinge loss, L (ŷ, y) = [1− yŷ]+ (for the −1 and 1 coding for y
and ŷ ∈ <), and linear functions of predictor x ∈ <p, say β0 + x′β, as basic
function updates. (Of course, since linear combinations of linear functions are
linear, this can only produce a best linear voting function.)
a) What starting function f0 (x) would be used?
b)With the (m− 1) iterate fm−1 (x) in hand, each ỹim is in {−1, 1}. Using

appropriate indicator functions, give an explicit formula for ỹim in terms of yi
and ŷim−1 = fm−1 (xi).
c) Describe in words how you would use standard statistical software to

produce β0m and βm so that all β0m + x′iβm approximate the values ỹim.

d) Why does optimization of
N∑
i=1

[1− yi (fm−1 (xi) + ρ (β0m+x′iβm))]+ over

choices of ρ involve comparison of this quantity for at most N values of ρ? Give
a formula for values of ρ that you might have to check.
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e) After M iterations you won’t have an fM (x) taking only values −1 and
1 at every xi. How do you use fM (x) to do classification?

12. (5HW-16) Use R and make a simple set of boosted predictions of home
price for the dataset of Problem 5 Section A.2 by first fitting a "default" random
forest (using randomForest), then correcting a fraction ν = .1 of the residu-
als predicted using a 7-nn predictor, then correcting a fraction ν = .1 of the
residuals predicted using a 1 component PLS predictor. Then permute the
orders in which you make these corrections and compare SSE for the 6 different
possibilities.

13. (5E2-14) Below are hypothetical counts from a small training set in a
2-class classification problem with a single input, x ∈ < (and we’ll treat x as
integer-valued). Although it is easy to determine what an approximately opti-
mal (0-1 loss) classifier is here, instead consider use of the AdaBoost.M1 algo-
rithm to produce a classifier. (Use "stumps"/two-node trees that split between
integer values as basis functions.) Find an M = 3 term version of the Ad-
aBoost.M1 voting function. (Give f̂1, α1, f̂2, α2, f̂3, and α3. The f̂ms are of the
form sign(x−#) or sign(#− x) and the final voting function is

∑3
m=1 αm, f̂m.)

x = 1 x = 2 x = 3
y = 1 3 5 2

y = −1 5 4 6

14. (5E1-20) In a toy p = 1 SEL prediction problem, the table in Problem 28 of
the Section A.2 provides N = 5 training cases. An initial predictor f̂0 (x) ≡ 0 is
boosted using simple linear regression and a learning rate of ν = 1/3 to produce
the predictor f̂1 (x) = .5x. This problem is about making 2 more "boosting"
steps to produce f̂3 (x).
a) Make a 1-nn "boosting" correction to f̂1 (x) with learning rate ν = .5 to

produce f̂2 (x) = f̂1 (x) + .5ê2 (x). (Give a formula/expression for ê2 (x), a step
function constant on 5 consecutive intervals.)
b) Find values for f̂2 (x) at x = −2,−1, 0−1, 2. Then consider a "regression

tree with a single split" "boosting" correction to this predictor. Choose from
values {−1.5,−.5, .5, 1.5} for the location of your split (justifying your choice)
and then give a formula for ê3 (x) (a step function taking 2 values).

A.29 Section 12.1 Exercises

1. (6HW-11) Figure 4.4 of HTF gives a 2-dimensional plot of the "vowel
training data" (available on the book’s website at
http://www-stat.stanford.edu/~tibs/ElemStatLearn/index.html or from
the UCI data repository. The ordered pairs of first 2 canonical variates are
plotted to give a "best" reduced rank LDA picture of the data like that below
(lacking the decision boundaries).
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Use the material of Section 12.1 to reproduce Figure 4.4 of HTF (color-coded
by group, with group means clearly indicated). Keep in mind that you may need
to multiply one or both of your coordinates by −1 to get the exact picture.

2. (6E2-11) Suppose that in a p = 2 linear discriminant analysis problem, four

transformed means µ∗k = Σ−
1
2 (µk−µ̄) are µ∗1 =

(
0
0

)
,µ∗2 =

(
4
4

)
,µ∗3 =(

3.5
1.5

)
, and µ∗4 =

(
.5

2.5

)
. These have sample covariance matrix

(
3.125 1.625
1.625 3.125

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)
diag (4.75, 1.5)

(
1√
2

1√
2

1√
2
− 1√

2

)

Suppose that one wants to do reduced rank (rank = 1) linear discrimination
based on a single real variable

w = (u1, u2) Σ−
1
2 (x−µ̄)

Identify an appropriate vector (u1, u2) and with your choice of vector, give the
function f (w) mapping < → {1, 2, 3, 4} that defines this 4-class classifier for the
case of π1 = π2 = π3 = π4.

3. (6E2-13) In a 6-class, p = 3 linear discriminant problem with equal class
probabilities (π1 = π2 = π3 = π4 = π5 = π6), unit eigenvectors correspond-
ing to the largest 2 eigenvalues of the sample covariance matrix of the sphered
(according to the common within-class covariance matrix) class means are re-
spectively

v1 =

(
1√
2
, 0,− 1√

2

)′
and v2 = (0, 1, 0)

′

Suppose that inner product pairs (〈µ∗k,v1〉 , 〈µ∗k,v2〉) for the sphered class means
are as below and that reduced rank (rank = 2) linear classification is of interest.
How should a sphered p = 3 observation x∗ = (3, 4,−5)

′ be classified?

Class 1 2 3 4 5 6
Inner Product Pair (5, 0) (−5, 0) (0, 3) (0,−3) (0, 0) (0, 0)

4. (6HW-17) Use the "Glass Identification" dataset referred to in Problem 6
of Section A.2. Do the following with it, not using the "problematic-looking"
inputs "Ba" and "Fe".
a) Use the lda() function in the MASS package and do LDA based on all

p = 7 inputs and find LOOCV 0-1 loss error rates for each type of glass and
overall.
b) Using the function stepclass() in the R package klaR (or otherwise)

use cross-validation to select a number of variables to use in linear discriminant

316



analysis for classification among the 6 glass types. Then choose this number of
input variables by forward selection with the whole dataset. What are they?
c) Find the first 2 canonical coordinates for all 215 cases in the dataset. Plot

N = 215 ordered pairs of these using different plotting symbols for the K = 6
glass types. Overlay on this plot classification regions based on LDA with these
first 2 canonical coordinates. Make a plot analogous to the plot in Figure 4.11
of HTF. (You may simply differently color points on a fine grid according to
which glass such a point would be classified to.)

A.30 Section 12.2 Exercises

1. (6HW-11) Consider again the context of Problem 1 of Section A.29.
a) Use the R function lda (in the MASS package) to obtain the group means

and coeffi cients of linear discriminants for the vowel training data. Save the lda
object by a command such as LDA=lda(insert formula, data=vowel).
b) Reproduce a version of the left figure below. You will need to plot

the first two canonical coordinates as in Problem 1 of Section A.29. Decision
boundaries for this figure are determined by classifying to the nearest group
mean. Do the classification for a fine grid of points covering the entire area of
the plot. You may plot the points of the grid with color coding according to
their classification instead of drawing in the black lines.

c) Make a version of the right figure above with decision boundaries now
determined by using logistic regression as applied to the first two canonical vari-
ates. You will need to create a data frame with columns y, canonical variate
1, and canonical variate 2. Use the vglm function (in the VGAM package) with
family=multinomial() to do the logistic regression. Save the object created
by a command such as LR=vglm(insert formula, family=multinomial(),
data=data set). A set of observations can now be classified to groups by us-
ing the command predict(LR, newdata, type=“response”), where newdata
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contains the observations to be classified. The outcome of the predict function
will be a matrix of probabilities. Each row contains the probabilities that a cor-
responding observation belongs to each of the groups (and thus sums to 1). We
classify to the group with maximum probability. As in b), do the classification
for a fine grid of points covering the entire area of the plot. You may again plot
the points of the grid, color-coded according to their classification, instead of
drawing in the black lines.
d) So that you can plot results, first use the 2 canonical variates employed

thus far and use rpart in R to find a classification tree with training error
rate comparable to the reduced rank LDA classifier pictured on the left above.
Make a plot showing the partition of the region into pieces associated with the
11 different classes. (The intention here is that you show rectangular regions
indicating which classes are assigned to each rectangle, in a plot that might be
compared to the plots above and from Problem 1 of Section A.29.)
e) The Culp, Johnson, and Michailidis paper referred to in Problem 5 of

Section A.28 discusses using a one-versus-all strategy that moves AdaBoost to
a multi-class problem known as the "AdaBoost.MH" algorithm. Continue the
use of the first two canonical coordinates of the vowel training data and find
both an appropriate random forest classifier and an AdaBoost.MH classifier for
the 11-class problem with p = 2, and once more show how the classifiers break
the 2-d space up into regions to be compared to other plots here.
f) Beginning with the original vowel dataset (rather than with the first 2

canonical variates) and use rpart in R to find a classification tree with training
error rate comparable to the classifier in d). How much (if any) simpler/smaller
is the tree here than in d)?

2. (6HW-13) Consider again the Swiss Bank Note dataset of Problem 4 of
Section A.28. Use caret train() to choose (via LOOCV using glmnet) a
logistic regression-based 0-1 loss classifier based on these data. Compare its
training set and cross-validation error rates to what you found in Section A.28.

3. (5E2-14) Overall, only a very small fraction of people presented with a
certain merchandising offer will respond to it. A set of 5 qualitative predictors
(potential personal traits) is thought to be related to response. Values for these
5 predictors are obtained from a group of 96 people who responded to the offer
and from a group of 604 who did not. Treating the input xj as taking the value
1 if a subject has trait j and 0 otherwise, a model for

p (x) = probability of responding to the offer given characteristics x

of the form

log

(
p (x)

1− p (x)

)
= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5

was fit (via maximum likelihood) to the 700 training cases yielding results

β̂0 = −3.42, β̂1 = 0.41, β̂2 = 1.76, β̂3 = −0.03, β̂4 = 0.13, β̂5 = 2.09
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a) Treating the 700 subjects (that were used to fit the logistic regression
model) as a random sample of people of interest (which it is surely not) give a
linear function g (x) such that f̂ (x) = I [g (x) > 0] is an approximately optimal
(0-1 loss) classifier (y = 1 indicating response to the offer).
b) Continuing with the logistic regression model, properly adjust your an-

swer to a) to provide an approximately optimal (0-1 loss) classifier for a case
where a fraction π1 = 1/1000 of all potential customers would respond to the
offer.

A.31 Section 13.1 Exercises

1. (6E1-11) Below is a small classification training set (for K = 2 classes)
displayed in graphical and tabular forms (circles are class −1 and squares are
class 1). Using geometry (not trying to solve an optimization problem analyt-
ically) find the maximum margin classifier for this problem. You may find it
helpful to know that if u,v, and w points in <2 and u1 6= v1 then the distance
from the point w to the line through u and v is

|w1 (v2 − u2)− w2 (v1 − u1) + v1u2 − u1v2|√
(v1 − u1)2 + (v2 − u2)2

List the set of support vectors and evaluate the margin for your classifier.

A.32 Section 13.2 Exercises

1. (6HW-11) Consider again the Wisconsin breast cancer dataset of Problem
24 of Section A.2. Compare an appropriate support vector classifier (SVM
with "linear kernel") based on the original input variables to a classifier based
on logistic regression using the same variables. (Use caret train() to identify
"best" versions of these classifiers in terms of LOOCV misclassification rates.)
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2. (5E2-14) Below is a cartoon representing the results of 3 different runs of
support vector classification software on a set of training data representing K =
3 different classes in a problem with input space <2. Each pair of classes was
used to produce a linear classification boundary for classification between those
two. (Labeled arrows tell which sides of the lines correspond to classification
to which classes.) 7 different regions are identified by Roman numerals on the
cartoon. Indicate values of an OVO (one-versus-one) classifier f̂OVO for this
situation. (For each region, identify decisions 1,2, or 3, or "?" if there is no
clear choice for a given region.)

A.33 Section 13.3 Exercises

1. (6HW-11) This problem concerns the famous p = 2 "Ripley dataset"
(synth.tr) commonly used as a classification example.
a) Using several different values of λ and constants c, find a function g ∈ A

and β0 ∈ < minimizing

N∑
i=1

(1− yi (β0 + g (xi)))+ + λ ‖g‖2A

for the (Gaussian) kernel K (x,z) = exp
(
−c ‖x−z‖2

)
. Make contour plots for

those functions g, and, in particular, show the g (x) = 0 contour that separates
[−1.5, 1.0]× [−.2, 1.3] into the regions where a corresponding SVM classifies to
classes −1 and 1.
b) Have a look at the Culp, Johnson, and Michailidis paper referred to in

Problem 5 of Section A.28. It provides perspective and help with both the
ada and randomForest packages. Find both AdaBoost.M1 and random forest
classifiers appropriate for the Ripley example. For a fine grid of points in
[−1.5, 1.0]×[−.2, 1.3], indicate on a 2-d plot which points get classified to classes
−1 and 1 so that you can make visual comparisons to the SVM classifiers referred
to in a).

2. (6E2-11) In what specific way(s) does the use of kernels and SVM method-
ology typically lead to identification of a small number of important features
(basis functions) that are effective in 2-class classification problems?
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3. (6HW-13) Consider again the Swiss Bank Note dataset of Problem 4 of
Section A.28. Use caret train() to choose (via LOOCV) to choose a SVM
based on Gaussian kernel and 0-1 loss for these data. Compare its training set
and cross-validation error rates to what you found in the Problem 4 of Section
A.28 and Problem 2 of Section A.30.

4. (6HW-13) Repeat part a) of Problem 1 above on the Seeds data of Problem
5 Section A.28. (Do the plotting on [−3, 3]× [−3, 3].)

5. (6E2-13) Consider again the toy classification scenario of Problem 6 in
Section A.28.
a) Is there a linear classifier based directly/only on x with err = 0? Explain.
b) Is there a support vector machine classifier based on the kernel K (x, z) =

(1 + xz)
2 with err = 0? Explain.

c) Is there a support vector machine classifier based on the kernel K (x, z) =

exp
(
−2 (x− z)2

)
that has err = 0? Explain.

6. (5HW-14) Return to the context of Problem 7 Section A.2, Problem 1
Section A.5, and Problem 5 in Section A.23 and the N = 400 training set and
large test set.
a) Apply linear discriminant analysis to the training set. Identify the regions

in (0, 1)
2 corresponding to the values of ŷ = 1, 2, 3, 4. Evaluate the (conditional

on the training set) test error rate for LDA based on this training set.
b) Use logistic regression (e.g. as implemented in glm() or glmnet()) on

the training data to find 6 classifiers with linear boundaries for choice between
all pairs of classes. Then consider an OVO classifier that classifies x to the class
with the largest sum (of 3) estimated probabilities coming from these logistic
regressions. Make a plot showing the regions in (0, 1)

2 where this classifier has
f̂ (x) = 1, 2, 3,and 4. Use the large test set to evaluate the (conditional on the
training set) error rate of this classifier.
c) It seems from the glmnet() documentation that using

family="multinomial" one can fit multivariate versions of logistic regression
models. Try this using the training set. Consider the classifier that classifies
x to the class with the largest estimated probability. Make a plot showing
the regions in (0, 1)

2 where this classifier has f̂ (x) = 1, 2, 3, and 4. Use the
large test set to evaluate the (conditional on the training set) error rate of this
classifier.
d) Pages 360-361 of K&J indicate that upon converting output y taking

values in {1, 2, 3, 4} to 4 binary indicator variables, one can use nnet with the
4 binary outputs (and the option linout = FALSE) to fit a single hidden layer
neural network to the training data with predicted output values between 0 and
1 for each output variable. Try several different numbers of hidden nodes and
"decay" values to get fitted neural nets. From each of these, define a classifier
that classifies x to the class with the largest predicted response. Use the large
test set to evaluate (conditional) error rates of these classifiers and pick the one
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with the smallest. Make a plot showing the regions in (0, 1)
2 where your best

neural net classifier has f̂ (x) = 1, 2, 3, and 4.
e) Use svm() in package e1071 to fit SVMs to the y = 1 and y = 2 training

data for the

• "linear" kernel,

• "polynomial" kernel (with default order 3),

• "radial basis" kernel (with default gamma, half that gamma value, and
twice that gamma value)

Use the plot() function to investigate the nature of the 5 classifiers. Put
the training data pairs on the plot using different symbols or colors for classes
1 and 2, and also identify the support vectors.

f) Find SVMs (using the kernels indicated in d)) for the K = 4 class prob-
lem. Again, use the plot() function to investigate the nature of the 5 classifiers.
Use the large test set to evaluate the (conditional) error rates for these 5 clas-
sifiers.
g) Use either the ada package or the adabag package and fit an AdaBoost.M1

classifier to the y = 1 and y = 2 training data. Make a plot showing the regions
in (0, 1)

2 where this classifier has f̂ (x) = 1 and 2. Use the large test set
to evaluate the conditional error rate of this classifier. How does this error
rate compare to the best possible one for comparing classes 1 and 2 with equal
weights on the two? (You should be able to get the latter analytically.)
h) It appears from the Culp, Johnson, and Michailidis paper referred to in

Problem 5 of Section A.28 that ada implements a OVA version of a K-class
AdaBoost classifier in R. Use this and find the corresponding classifier. Make
a plot showing the regions in (0, 1)

2 where this classifier has f̂ (x) = 1, 2, 3, and
4. Use the large test set to evaluate the conditional error rate of this classifier.

7. (5E2-14) Consider a 2-class 0-1 loss classification problem with {−1, 1}
coding of y. For input x ∈ <2 and a parameter γ > 0, based on a training set
of size N consider the classifier

f̂ (x) =



1 if
∑
i with
yi=1

exp
(
−γ ‖x− xi‖2

)
>

∑
i with
yi=−1

exp
(
−γ ‖x− xi‖2

)

−1 if
∑
i with
yi=1

exp
(
−γ ‖x− xi‖2

)
<

∑
i with
yi=−1

exp
(
−γ ‖x− xi‖2

)
a) On what basis might one expect that for large N this classifier is approx-

imately optimal?
b) For what "voting function" g (x) is f̂ (x) =sign(g (x))? Is this g (x) a

linear combination of radial basis functions?
c) Why will f̂ (x) typically not be of the form of a support vector machine

based on a Gaussian kernel?
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A.34 Section 14 Exercises

1. (6E2-11) The reduced rank classifier of Problem 2 of Section A.29 can be
thought of as a "prototype classifier." Give 4 prototypes (real numbers) that
can be though of as defining the classifier.

2. (6HW-13) Return to the context of Problem 5 of Section A.28 and the
Seeds dataset. Use theK-means method in the R stats package (or some other
equivalent method) to find K (7-dimensional) prototype vectors for representing
each of the 3 wheat varieties for each of K = 5, 7, 10. Then compare training
error rates for classifiers that classify to the variety with the nearest prototype
for these values of K.

3. (6HW-17) Consider again the Wisconsin breast cancer dataset of Problem
24 of Section A.2. In what follows use standardized versions of the p = 9 inputs.
a) For both malignant cases and (separately) benign cases, use K-means

clustering and by considering error sums of squares across the inputs, identify
small values of K beyond which more clusters are "not essential" in represent-
ing the data cases. Make parallel coordinates plots (if you aren’t familiar with
these, see e.g. https://datascience.blog.wzb.eu/2016/09/27/parallel-
coordinate-plots-for-discrete-and-categorical-data-in-r-a-comparison/)
for the Kmalignant and Kbenign mean vectors produced. (Use the same vertical
scales on the two plots so that you can compare them.)
b) Using the Kmalignant +Kbenign mean vectors identified part a) as proto-

types, classify the cases in the dataset according to whether the closest proto-
type represents a malignant or a benign case. What are the training error rates
(malignant, benign, and overall)?
c) Follow the LVQ algorithm as outlined in the exposition for 1000 itera-

tions beginning from the Kmalignant + Kbenign mean vectors identified part a)
as prototypes. Use a series of learning rates εm = .1 (.999)

m−1. Then classify
the cases in the dataset according to whether the closest prototype represents
a malignant or a benign case. What are the training error rates (malignant,
benign, and overall)?

A.35 Section 15.2 Exercises

1. (6HW-11) Let A be the set of absolutely continuous functions on [0, 1] with
square integrable first derivatives (that exist except possibly at a set of measure
0). Equip A with an inner product

〈h, g〉A = h (0) + g (0) +

∫ 1

0

h′ (x) g′ (x) dx

a) Show that
R (x, z) = 1 + min (x, z)

is a reproducing kernel for this Hilbert space of functions.
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b) Using Heckman’s development, describe as completely as possible

arg min
h∈A

(
N∑
i=1

(yi − h (xi))
2

+ λ

∫ 1

0

(h′ (x))
2
dx

)

c) Using Heckman’s development, describe as completely as possible

arg min
h∈A

(
N∑
i=1

(
yi −

∫ xi

0

h (t) dt

)2
+ λ

∫ 1

0

(h′ (x))
2
dx

)

2. (6HW-15) In the context of Problem 1 above, consider the toy dataset
below.

y 1.1 1.5 2.4 2.2 1.7 1.3 .3 .1 .1 .5 .1
x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

a) For two different values of λ > 0 find the optimizing function h ∈ A for
the criterion in part b) of Problem 1.
b) For two different values of λ > 0 find the optimizing function h ∈ A for

the criterion in part c) of Problem 1.

A.36 Section 15.3 Exercises

1. (6E2-15) Consider the Gaussian kernel K (x, z) = exp
(
− (x− z)2

)
for x

and z in [−2, 4] and a corresponding RKHS, A. Based on the very small (x, y)
training set

y 4 4 3 3 2
x −1 0 1 2 3

we wish to fit a function of the form f̂ (x) = α0 + α1x+ h (x) for h ∈ A under
the fitting criterion

5∑
i=1

(
yi − f̂ (xi)

)2
+ 2 ‖h‖2A

You may use the fact that the least squares line through these data pairs is
ŷ = 3.7− .5x. Find the optimizing f̂ (x).

2. (6HW-17) Return to the baseball home run dataset of Problem 7 of
Section A.13 (treating the year index as "x"). Consider the two kernel func-

tions K1 (x, z) = exp
(
−.5 (x− z)2

)
and K2 (x, z) = exp

(
− (x− z)2

)
and the

corresponding RKHSs (say A1 and A2). For λ = 1 and λ = 10 find coeffi cients
β0, β1, and β2 and function h ∈ A minimizing

N∑
i=1

(
yi −

(
β0 + β1x+ β2x

2 + h (x)
))2

+ λ ‖h‖2A
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(There are 4 different optimizations intended here for the two kernels and two
values of λ.) Plot the 4 resulting functions

β0 + β1x+ β2x
2 + h (x)

on a single set of axes, together with the 145 original (x, y) data points. (If
this is computationally infeasible, you may reduce the size of the problem by
considering only the "last N" years in the dataset, where N doesn’t break your
computer.)

A.37 Section 15.4 Exercises

1. (6HW-11) Center the outputs for the dataset of Problem 1 of Section
A.18. Then derive sets of predictions ŷi based on µ (x) ≡ 0 Gaussian process
priors for f (x). Plot several of those as functions on the same set of axes (along
with centered original data pairs) as follows:
a) Make one plot for cases with σ2 = 1, ρ (∆) = exp

(
−c∆2

)
, τ2 = 1, 4, and

c = 1, 4.
b) Make one plot for cases with σ2 = 1, ρ (∆) = exp (−c |∆|) , τ2 = 1, 4, and

c = 1, 4.
c)Make one plot for cases with σ2 = .25, but where otherwise the parameters

of a) are used.

2. (6HW-11) Consider again the situation of Problem 1 Section A.16. Center
the outputs and then derive a set of predictions ŷi based on a µ (x) ≡ 0 prior

for f (x). Use σ2 = (.02)
2, ρ (x−z) = exp

(
−2 ‖x−z‖2

)
, and τ2 = .25. How do

these compare to the ones you made in Section A.16?

3. (6HW-13) Consider again the situation of Problem 2 Section A.16. Center
the outputs and then derive a set of predictions ŷi based on a µ (x) ≡ 0 prior

for f (x). (Use ρ (x−z) = exp
(
−c ‖x−z‖2

)
and what seem to you to be

appropriate values of c, σ2, and τ2.) How do your predictions compare to the
ones you made in Section A.16?

4. (6HW-15) Consider again the situation of Problem 17 Section A.2. Center
the outputs and then derive a set of predictions ŷi based on a µ (x) ≡ 0 prior
for f (x). Plot several of those as functions on the same set of axes (along with
centered original data pairs) as follows:
a) Make one plot for cases with what appear to you to be a sensible choice

of σ2, for ρ (∆) = exp
(
−c∆2

)
, τ2 = σ2, 4σ2, and c = 1, 4.

b) Make one plot for cases with ρ (∆) = exp (−c |∆|) and the choices of
parameters you made in a).
c)Make one plot for cases with σ2 one fourth of your choice in a), but where

otherwise the parameters of a) are used.
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A.38 Section 17.1 Exercises

1. (6HW-13) There is a small fake dataset below. It purports to be a record
of 20 transactions in a drugstore where toothpaste, toothbrushes, and shaving
cream are sold. Assume that there are 80 other transaction records that include
no purchases of any toothpaste, toothbrush, or shaving cream.

a) Find I .02 (the collection of item sets with support at least .02).
b) Find all association rules derivable from rectangles in I .02 with confidence

at least .5.
c) Find the association rule derivable from a rectangle in I .02 with the largest

lift.

2. (5E2-14) In a toy transaction database there are 5 transactions with items
from the set of letters A through G. These are:

Transaction Number Items Included
1 A,B,D,G
2 B,C,E,G
3 A,C,D,F
4 C,D,E,G
5 A,B,C,G

a) Find all item sets of support at least .4.
b) For the 3-item set with the largest support, what are the confidence,

expected confidence and lift of the associated conjunctive rules?

A.39 Section 17.2 Exercises

1. (6HW-13) Work again with the Seeds data of Problem 5 Section A.28. Be-
gin by again standardizing all p = 7 measured variables. JMP will do clustering
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for you. (Look under the Analyze->Multivariate menu.) In particular, it will
do both hierarchical and K-means clustering, and even self-organizing mapping
as an option for the latter. Consider
i) several different K-means clusterings (say with K = 9, 12, 15, 21),
ii) several different hierarchical clusterings based on 7-d Euclidean distance

(say, again with K = 9, 12, 15, 21 final clusters), and
iii) SOMs for several different grids (say 3× 3, 3× 5, 4× 4, and 5× 5).
Make some comparisons of how these methods break up the 210 data cases

into groups. You can save the clusters into the JMP worksheet and use the
GraphBuilder to quickly make plots. If you "jitter" the cluster numbers and
use "variety" for both size and color of plotted points, you can quickly get a
sense as to how the groups of data points match up method-to-method and
number-of-clusters-to-number-of-clusters (and how the clusters are or are not
related to seed variety). Also make some comparisons of the sums squared
Euclidean distances to cluster centers.

2. (6HW-13) A p = 2 dataset (that has N = 200 cases of (x1, x2) pairs) with
"obvious graphical structure" is provided with these notes. Plot these 200 pairs
and see that there are somehow 4 different kinds of "structure" in the dataset.
Apply the "graphical spectral features" idea (use w (d) = exp

(
−d2/c

)
) and see

if you can "find" the 4 structures in the dataset (by appropriate choice of c and
using hierarchical clustering of 200 vectors of 4 or fewer dimensions).

3. (6E2-13) Give a p = 1 dataset of size N = 4 that shows that the result
of ordinary K-means clustering can depend upon the starting cluster centers.
(List the 4 data values, consider the 2-cluster problem, and give two different
pairs of starting centers that produce different final clusterings. Your starting
centers do not need to be data points.)

4. (6E2-13) Below is a toy proximity matrix for N = 6 items. Show the
steps of agglomerative hierarchical clustering (from 5 to only 2 clusters) using
both single and complete linkage. (At every stage, list the clusters as subsets
of {1, 2, 3, 4, 5, 6}. In case of "ties" at any step, pick any of the equivalent
possibilities.) 

0 1 1 1.41 1.41 1.74
1 0 1.40 1.01 1.73 1.41
1 1.40 0 1.72 1.01 1.41

1.41 1.01 1.72 0 1.40 1
1.41 1.73 1.01 1.40 0 1
1.74 1.41 1.41 1 1 0


5. (5HW-14) Apply model-based clustering to the "USArrests" data in basic
R using the mclust package and interpret your results.

6. (6HW-17) Consider again the "Glass Identification" dataset of Problem 6 of
Section A.2. Use mclust (for Gaussian model-based clustering) and hclust (for
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hierarchical clustering) using average linkage to cluster the 215 glass samples on
the basis of the 7 (standardized) inputs used there. For the case of 6 clusters
from each method, make a table giving counts of cases in a given cluster from
mclust and a given cluster from hclust. Then compute the "Rand index" for
comparing clusterings (look it up on Wikipedia).

7. (5E2-14) Below is a representation of a toy 9-point dataset with p =
1. Use agglomerative hierarchical clustering first with single linkage and then
with complete linkage to find K = 3 clusters in these values. List for each
agglomeration step all groups of more than one value . (You don’t need to
list every value in the dataset.)

8. (5HW-20) Consider the problem of clustering points x1,x2,x3, . . . ,xr
belonging to <p after transforming them to an abstract function space on <p

using the mapping T (x) (·) = K (x, ·) = exp
(
−γ ‖x−·‖2

)
, where the function

space inner product for points mapped from <p is 〈T (x) , T (z)〉A = K (x,z).
Suppose that squared function-space distance is the dissimilarity measure used.
a) Describe agglomerative hierarchical clustering in enough detail that it

could be implemented from any formulas and instructions that you supply.
b) Describe K-means clustering in the function space in enough detail that

it could be implemented from any formulas and instructions that you supply.
(Notice that the concept of arithmetic average makes sense in any linear space,
including the abstract feature space.)

A.40 Section 17.3 Exercises

1. (6HW-13) Use appropriate R packages/functions and do multi-dimensional
scaling on the 210 cases of the Seeds dataset used in Problem 5 Section A.28,
mapping from <7 to <2 using Euclidean distances. Plot the 210 vectors zi ∈ <2
using different plotting symbols for the 3 different varieties.

2. (6E2-13) Below is a toy proximity matrix for N = 4 items. If one should
want to map items to <1 in a way that makes distances between corresponding
points in <1 approximately equal to the dissimilarities in the matrix, there is
no loss of generality in assuming that the first item is mapped to z1 = 0. Say
why there is then no loss of generality to assume that that the second item is
mapped to a positive value, i.e. z2 > 0 and provide a suitable function of z2, z3,
and z4 that you would try to optimize in order to accomplish this task.

0 1 1
√

2

1 0
√

2 1

1
√

2 0 1√
2 1 1 0
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3. (6HW-17) The 10 countries in the world with the largest populations are
China, India, United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh,
Russia, and Mexico. You can find the (great circle) distances between their
capital cities using this online calculator:
http://www.chemical-ecology.net/java/capitals.htm Use multi-dimensional
scaling to make a 2-d representation of these cities intended to more or less pre-
serve great circle distances. (The pattern at
http:/www.personality-project.org.html might prove helpful to you.)

A.41 Section 18.2.1 Exercises

1. (6E2-13) Below is a network diagram for a simple restricted Boltzmann
machine (with hidden nodes 1 and 2, and visible nodes 3 and 4).. Assume
the corresponding probability model for x = (x1, x2, x3, x4) has parameters
θ01, θ02, θ03, θ04, θ13, θ14, θ23, and θ24 and that somehow the network has been
"trained" producing θ̂01 = θ̂02 = 1, θ̂03 = θ̂04 = −1, θ̂13 = θ̂14 = 1, and θ̂23 =
θ̂24 = −1.

a) Find (for the fitted model) the ratio P [x = (1, 0, 1, 0)] /P [x = (0, 0, 0, 0)].
b) Find (for the fitted model) the conditional distribution of (x1, x2) given

that (x3, x4) = (0, 0). (You will need to produce 4 conditional probabilities.)

A.42 "General/Comprehensive" Exercises

1. (5HW-20) Consider the White Wines Dataset56 from the UCI Machine
Learning Data Repository
http://archive.ics.uci.edu/ml/datasets/Wine+Quality.
Consider SEL prediction of what can be learned about wine "quality" from

the 11 input variables. There are roughly 5000 cases in this dataset, and it is
about at the (size) limit of what is conveniently handled using R and an ordinary
laptop. (Other faster software like Python or MatLab and/or implementation
on a server or cluster may be required for bigger datasets with many machine
learning applications.)

56The White Wines Dataset is not absolutely ideal as an example in that the response
variable can take only integer values 1 through 10 and is probably not really an interval-
level variable in the first place (being more ordinal in nature). For purposes of exercise we
will ignore these matters, and treat the quality rating as a measured numerical response and
consider prediction under SEL.
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a) Find sets of best (according to LOOCV) predictions for the quality ratings
for

• k-nn prediction

• elastic net prediction

• PCR prediction

• PLS prediction

• MARS prediction (implemented in earth)

• regression tree prediction

• random forest prediction

• boosted trees prediction

• Cubist prediction

Say what parameters you settled on for each method.
b) Make a scatterplot matrix for all 9 sets of prediction in a) plus the y

values and OLS predictions. Compute a correlation matrix for these 11 sets of
values and display this rounded to 2 decimal places.
c) Consider the problem of combining the 9 "basic" prediction methodolo-

gies employed in a) via stacking/generalized stacking/meta-prediction/super-
learning. There is nothing that says that the "good" sets of parameters you
developed for "individual" use of the prediction methods are in any sense "good"
choices if ultimately one is going to use the methods as elements of an "ensem-
ble." But for purposes of exercise here, we are not going to "redo" them, but
will take them as chosen. (We will here consider combining these through the
use of first OLS MLR and then through the use of a random forest made with
"default" parameters.)
Randomly break the White Wines dataset into 10 folds of sizes as nearly

equal as possible. For each fold and its remainder fit a predictor using the
remainder as a training set via each of the methods in a) (and the parameters
of the methods previously identified) and use it to make predictions for cases in
the fold. Then

1. Use the remainder as a training set and the values of the 9 predictors (on
the remainder) as "features" in a MLR model (including intercept). Use
OLS to fit this to the outputs for the cases in the remainder.

2. Use the remainder as a training set and the values of the 9 predictors (on
the remainder) as "features" and fit a default random forest to the outputs
for the cases in remainder.

3. Apply the coeffi cients from 1. to the 9 predictions to make an ensemble
prediction for each case in the fold.
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4. Apply the random forest fit in 2. to the 9 predictions to make an ensemble
prediction for each case in the fold.

5. For both the predictions in 3. and 4. add the squared differences between
outputs and predicted outputs across the fold.

6. Total the results of 5. across the 10 folds, divide by N , and take a square
root to get a "RMSPE" for the basic methods and parameters combined
through OLS and through a random forest.

Do the values "RMSPE" in 6. improve on what you have for the best of the
CVRMSPEs for the individual methods?
d) Discuss how you would get an "honest" CV assessment of likely perfor-

mance of the strategy of first fitting predictors using methods in a) obtaining
parameters from caret train() and then combining them via OLS MLR or
default random forest. Explain why the "RMSPE" values from c) are probably
too optimistic to serve the purpose here.

2. (5HW-20) Consider again the Glass Identification dataset and 2-class
classification problem of Problem 6 of Section A.2.
a) Use LOOCV to identify a good number of neighbors to use for k-nn

classification (based on 0-1 loss) for the 2-class classification problem.
b) Use LOOCV to identify a good classification tree for 0-1 loss in the 2-class

classification problem.
c) Use the OOB error and optimize a classification random forest over choice

of both m and nmin for 0-1 loss in the 2-class classification problem.
d) Use LOOCV to identify a good (single layer feed-forward) neural network

for classification (optimize over both number of hidden nodes and weight decay)
based on 0-1 loss for the 2-class classification problem.

e) Use LOOCV to identify a good elastic net penalized logistic regression
for 0-1 loss 2-class classification.
f) Use LOOCV to identify a good support vector classifier (based on 0-1

loss) for the 2-class classification problem. (That is, find a good SVM with
"linear kernel.")
g) Use as much LOOCV grid-searching as you can afford (time-wise) to

identify a good support vector machine with "Gaussian kernel" (based on 0-1
loss) for the 2-class classification problem.
h) Use as much LOOCV grid-searching as you can afford (time-wise) to

identify a good number of iterations for an AdaBoost.M1 classifier based on 0-1
loss for the 2-class classification problem.
i) Use as much LOOCV grid-searching as you can afford (time-wise) to

identify a good tree-boosting classifier using XGBoost for 0-1 loss 2-class classi-
fication.
j) Compare the classifiers in parts a) through i) on the basis of

• training error rates (for 0-1 loss)
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• the AUC criterion57 , and

• cross-validation (and OOB) 0-1 loss error rates.

3. (5HW-20). Consider again the White Wines dataset of Problem 1 above,
but now the problem of predicting the class variable

y∗ = I [y > 7]

Call a wine with rating 7 or better a "good" wine and this becomes a problem
of classification of wines into "not good" and "good" ones.
a) Carry out the steps a) through i) in Problem 2 above (there referring to

the Glass-Identification problem) for this wine classification problem.
Consider the problem of combining basic classification methodologies via

stacking/generalized stacking/meta-prediction/super-learning in theWhite Wines
classification problem immediately above.
b) Use the outputs of your classifiers developed in a) and the original input

variables (the 11 quality measures giving 9 + 11 "features" in total) as inputs to
a default random forest. (Where they are available, use estimated conditional
probabilities for class 2 rather than the classification values assigned to the
training cases by the classifiers.) What "training error rate" is produced for
0-1 loss? There is a nominal random forest "OOB error" rate associated with
your final "super-learner." Why should you NOT trust either of these numbers
as being indicative of the likely performance of the "tune 9 classifiers and plug
their outputs into a default random forest" prediction methodology?
c) Say very clearly and carefully how (given plenty of computing power) you

would compute an honest assessment of the likely performance of the "super-
learner" described above.

57You may, for example, use the pROC package to (plot the "ROC curve" and) compute this.
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